sirt1 activator
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Rashmi Patil ◽  
Urmila Aswar

Pterostilbene (PTE) (3-5 dimethoxy-4-hydroxy-trans-stilbenes) is an analogue of resveratrol. It is extracted and isolated from a natural source of the heartwood of Pterocarpus marsupium Roxb., red grape skin, and blueberries (Vaccinium spp.). Substantial evidence suggested that PTE displayed numerous preventive and therapeutic properties in many metabolic disorders such as diabetes and obesity. Metabolic diseases result in Insulin resistance (IR) which advances to impaired sensitivity to insulin-mediated glucose disposal. The prominent role of SIRT (silent information regulator proteins) is now getting emphasized in metabolic disorders. SIRT1 represses Uncoupling protein 2 (UCP2) expressions which are further responsible for improving synthesis of ATP from glucose. This results in improving glucose utilization and insulin secretion, thus preventing IR. SIRT1 also exhibits prominent role in facilitating fatty acid mobilization thereby inhibiting adiposity. Metabolic disorders are therefore the consequences of SIRT1 downregulation. Pterostilbene, being a SIRT1 activator, increases insulin sensitivity reduces adiposity, therefore can prove to be beneficial in diabetes as well as obesity. The review summarizes therapeutic effects portrayed by Pterostilbene via the SIRT1 pathway in metabolic diseases.


2022 ◽  
Vol 12 (1) ◽  
pp. 183-191
Author(s):  
Yuee Zhao ◽  
Songping Yu ◽  
Zhenqiang Huang ◽  
Jiaqi Chen ◽  
Xuying Zhang ◽  
...  

The study focused on the therapeutic effects of resveratrol, sirtuin 1 (Sirt1) activator, on glaucoma, and its influence on mitogen-activated protein kinase (MAPK) pathway. Specifically, C57BL/6 mice were used and the glaucoma mouse model was established by intraperitoneal injection of N-methyl-D-aspartate (NMDA). According to different treatment methods, they were randomly rolled into 3 groups: control group (no treatment), model group (glaucoma mouse model), and resveratrol (Res) group (intraperitoneal injection of 20 mg/kg resveratrol solution on the basis of model group). The intraocular pressure was measured, and Sirt1 mRNA and protein expression was detected using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Subsequently, hematoxylin-eosin staining was used to observe histopathological morphology, the immunofluorescence labeling was used to identify retinal survival ganglia, and Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and Western blot were for apoptotic cells determination and the expression of c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 protein in mitogen-activated protein kinase (MAPK) pathway, respectively. The model group showed lower intraocular pressure, Sirt1 mRNA and protein expression, number of survival retinal ganglion cells (RGCs), and thinner retina versus the control group (P < 0.05), but number of apoptotic RGCs and the phosphorylation levels of the three kinds of protein were higher (P < 0.05), and it exhibited no notable difference from the Res group (P > 0.05). Also, compared with the control group, the number of survival RGCs in the Res group was reduced (P < 0.05), but no notable difference was noted in the retinal thickness, the number of apoptotic RGCs, and the phosphorylation levels of the three kinds of protein (P > 0.05). In conclusion, resveratrol, the Sirt1 activator, can inhibit RGCs apoptosis through the MAPK signaling pathway and improve the pathological manifestations of glaucoma animal models, thus playing a protective role of the retina.


2021 ◽  
Author(s):  
Hsiang-Yu Yang ◽  
Jhao-Ying Chen ◽  
Yen-Nien Huo ◽  
Pei-Ling Yu ◽  
Pei-Zhen Lin ◽  
...  

Abstract Background: Lipotoxicity causes endoplasmic reticulum (ER) stress, leading to cell apoptosis. Sirtuin 1 (Sirt1) regulates gene transcription and cellular metabolism. In this study, we investigated the role of Sirt1 in palmitate-induced ER stress. Methods: H9c2 myoblasts and heart-specific Sirt1 knockout mice fed a palmitate-enriched high-fat diet were used. Results: The high-fat diet induced C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) expression in both Sirt1 knockout mice and controls. Sirt1 knockout mice showed higher CHOP and ATF4 expression compared to those in control. Palmitic acid (PA) induced ATF4 and CHOP expression in H9c2 cells. PA-treated H9c2 cells showed decreased cytosolic NAD+/NADH alongside reduced Sirt1’s activity. H9c2 cells showed increased ATF4 and CHOP expression when transfected with plasmid encoding dominant negative mutant Sirt1. Sirt1 activator SRT1720 did not affect CHOP and ATF4 expression. Although SRT1720 enhanced nuclear translocation of ATF4, the extent of the binding of ATF4 to the CHOP promoter did not increase further in PA treated-H9c2 cells.Conclusion: PA-induced ER stress is mediated through upregulation of ATF4 and CHOP. Cytosolic NAD+ concentration is diminished by PA-induced ER stress, leading to decreased Sirt1 activity. The Sirt1 activator SRT1720 promotes nuclear translocation of ATF4 in PA-treated H9c2 cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenquan Zhou ◽  
Zhenhan Deng ◽  
Yuwei Liu ◽  
Yizi Zheng ◽  
Shiwei Yang ◽  
...  

Osteoarthritis (OA), one of the most common chronic musculoskeletal disorders, is deemed to be correlated with aging. The SIRT1 activator, resveratrol, acts as a crucial regulator of aging and may have a potential therapeutic effect on OA. Rabbit OA models were established through destabilized medial meniscus surgery. A total of 40 healthy male New Zealand rabbits were divided into five groups: control group (sham operation), OA group, as well as low dose (LD), middle dose (MD), and high dose (HD) resveratrol-treated OA groups. 6 weeks after operation, 0.8 ml of normal saline was injected into the knee joints every other day in the control and OA groups, and 0.8 ml of 5, 10, and 15 μmol/L resveratrol was injected into the knee joints every other day in the LD, MD, and HD group, respectively. The rabbits were sacrificed 2 weeks after medication, and the articular cartilage of the knee joint was collected for Micro-CT, histology and Western blot analysis. Obvious articular cartilage lesion and joint space narrowing were detected in the OA group. Compared with the OA group, less osteoarthritic changes were observed in the MD and HD groups. The MD and HD groups had significantly lower bone volume fraction, trabecular number and Mankin scores than the LD and OA groups (p &lt; 0.05). No significant difference was found between the OA and LD groups (p &gt; 0.05). The expressions of SIRT1 and p53 detected by western blot were consistent with the aforementioned findings. Therefore, resveratrol can activate the SIRT1 gene to play a protective role in the OA process by inhibiting chondrocyte apoptosis, trabecular bone number increasing of the subchondral bone, as well as elevation of bone density. It demonstrated the importance of SIRT1 in maintaining articular cartilage health and provided a promising therapeutic intervention in the treatment of OA.


2021 ◽  
Author(s):  
Yanwei Li ◽  
Wei Cui ◽  
Bing Song ◽  
Xuying Ye ◽  
Zhuqing Li ◽  
...  

Abstract Background and purpose: SIRT1 exerted its link to CAS risk in humans and EPCs presented its reparative role in CAS. In this study, we explored the role of SIRT1 in CAS mice and also its modulation in EPCs.Methods and materials: ApoE-/- mice were fed with high-fat and high-glucose food to establish the CAS animal model with the normally-raised C57BL/6 mice as a healthy control group. 5 ApoE mice were intravenously injected with SIRT1 activator, SRT 2104 and another 5 were injected with inhibitor Nicotinamide in tail. Weight changes were recorded per week. Blood samples were taken from posterior orbital venous plexus and detected by automatic biochemical analyzer for lipid concentrations. Coronary artery tissues were observed. HE staining displayed the pathological condition while Immunohistochemistry (IHC) evaluated the CD34+/VEGFR2+ relative density. In vitro, EPCs were isolated from bone marrow each group and then purified, cultured and verified using immunofluorescence staining (IFS). Thereafter, we examined the modulatory mechanism of SIRT1 in EPCs by RT-PCR, MTT, Western Blot (WB) and colony formation, scratch methods, connecting the wnt/β-catenin/GSK3β signaling pathway.Results:SIRT1 activation negatively regulated the weight and TC, TG and LDL. SIRT1 activator alleviated the lesion area and decreased the CD34+/VEGFR2+ density which was higher in coronary artery tissues in CAS and SIRT1 inhibitor groups. In vitro, SIRT1 activator promoted the bone marrow-derived EPCs proliferation, migration and activated wnt/β-catenin/GSK3β signaling pathway while inhibited the autophagy biomarkers ATG1 and LC3II. Furthermore, inhibition of autophagy led to the upregulation of SIRT1 and increase in cell proliferation, migration and wnt/β-catenin/GSK3β activity. The suppression of the pathway in turn lowered SIRT1 expression in EPCs, attenuated the cell proliferation and migration and promoted autophagy. Conclusion: Taken all the findings together, this research disclosed that SIRT1 activator might perform its protective role in CAS through autophagy inhibition via wnt/β-catenin/GSK3β signaling pathway in EPCs.


2021 ◽  
Vol 143 (3) ◽  
pp. 1416-1427
Author(s):  
Qingxia Huang ◽  
Hang Su ◽  
Bin Qi ◽  
Ying Wang ◽  
Kaili Yan ◽  
...  

2020 ◽  
Vol 89 ◽  
pp. 107036 ◽  
Author(s):  
Si-wei Wang ◽  
Wen Wang ◽  
Hao Sheng ◽  
Yong-feng Bai ◽  
Yuan-yuan Weng ◽  
...  

Author(s):  
Magdalena Szymanska ◽  
Sarah Manthe ◽  
Ketan Shrestha ◽  
Eliezer Girsh ◽  
Avi Harlev ◽  
...  

Abstract Endothelin-2 (EDN2) expression in granulosa cells was previously shown to be highly dependent on the hypoxic mediator, hypoxia inducible factor 1 alpha (HIF1A). Here, we investigated whether sirtuin-1 (SIRT1), by deacetylating HIF1A and class III histones, modulates EDN2 in human granulosa-lutein cells (hGLCs). We found that HIF1A was markedly suppressed in the presence of resveratrol or a specific SIRT1 activator, SRT2104. In turn, hypoxia reduced SIRT1 levels, implying a mutually inhibitory interaction between hypoxia (HIF1A) and SIRT1. Consistent with reduced HIF1A transcriptional activity, SIRT1 activators, resveratrol, SRT2104, and metformin, each acting via different mechanisms, significantly inhibited EDN2. In support, knockdown of SIRT1 with siRNA markedly elevated EDN2, whereas adding SRT2104 to SIRT1-silenced cells abolished the stimulatory effect of siSIRT1 on EDN2 levels further demonstrating that EDN2 is negatively correlated with SIRT1. Next, we investigated whether SIRT1 can also mediate the repression of the EDN2 promoter via histone modification. Chromatin immunoprecipitation (ChIP) analysis revealed that SIRT1 is indeed bound to the EDN2 promoter and that elevated SIRT1 induced a 40% decrease in the acetylation of histone H3, suggesting that SIRT1 inhibits EDN2 promoter activity by inducing a repressive histone configuration. Importantly, SIRT1 activation, using SRT2104 or resveratrol, decreased the viable numbers of hGLC, and silencing SIRT1 enhanced hGLC viability. This effect may be mediated by reducing HIF1A and EDN2 levels, shown to promote cell survival. Taken together, these findings propose novel, physiologically relevant roles for SIRT1 in downregulating EDN2 and survival of hGLCs.


Sign in / Sign up

Export Citation Format

Share Document