weak satellite
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hailing Jia ◽  
Xiaoyan Ma ◽  
Fangqun Yu ◽  
Johannes Quaas

AbstractSatellite-based estimates of radiative forcing by aerosol–cloud interactions (RFaci) are consistently smaller than those from global models, hampering accurate projections of future climate change. Here we show that the discrepancy can be substantially reduced by correcting sampling biases induced by inherent limitations of satellite measurements, which tend to artificially discard the clouds with high cloud fraction. Those missed clouds exert a stronger cooling effect, and are more sensitive to aerosol perturbations. By accounting for the sampling biases, the magnitude of RFaci (from −0.38 to −0.59 W m−2) increases by 55 % globally (133 % over land and 33 % over ocean). Notably, the RFaci further increases to −1.09 W m−2 when switching total aerosol optical depth (AOD) to fine-mode AOD that is a better proxy for CCN than AOD. In contrast to previous weak satellite-based RFaci, the improved one substantially increases (especially over land), resolving a major difference with models.


2019 ◽  
Vol 632 ◽  
pp. A71 ◽  
Author(s):  
Tao Chen ◽  
Yi Luo ◽  
Aigen Li

Context. The 3.3 μm aromatic C–H stretching band of polycyclic aromatic hydrocarbon (PAH) molecules seen in a wide variety of astrophysical regions is often accompanied by a series of weak satellite bands at ∼3.4–3.6 μm. One of these sources, IRAS 21282+5050, a planetary nebula, also exhibits a weak band at ∼1.68 μm. While the satellite features at ∼3.4–3.6 μm are often attributed to the anharmonicities of PAHs, it is not clear whether overtones or combination bands dominate the 1.68 μm feature. Aims. In this work, we examine the anharmonic spectra of eight PAH molecules, including anthracene, tetracene, pentacene, phenanthrene, chrysene, benz[a]anthracene, pyrene, and perylene, to explore the origin of the infrared bands in the 1.6–1.7 μm wavelength region. Methods. Density functional theory (DFT) in combination with the vibrational second-order perturbation theory (VPT2) was used to compute the anharmonic spectra of PAHs. To simulate the vibrational excitation process of PAHs, the Wang–Landau random walk technique was employed. Results. All the dominant bands in the 1.6–1.7 μm wavelength range and in the 3.1–3.5 μm C–H stretching region are calculated and tabulated. It is demonstrated that combination bands dominate the 1.6–1.7 μm region, while overtones are rare and weak in this region. We also calculate the intensity ratios of the 3.1–3.5 μm C–H stretching features to the bands in the 1.6–1.7 μm region, I3.1 − 3.5/I1.6 − 1.7, for both ground and vibrationally excited states. On average, we obtain ⟨I3.1 − 3.5/I1.6 − 1.7⟩≈12.6 and ⟨I3.1 − 3.5/I1.6 − 1.7⟩≈17.6 for PAHs at ground states and at vibrationally excited states, respectively.


2018 ◽  
Vol 62 (9) ◽  
pp. 2494-2508 ◽  
Author(s):  
Zhouzheng Gao ◽  
Maorong Ge
Keyword(s):  
Mems Imu ◽  

Sign in / Sign up

Export Citation Format

Share Document