hyperspectral sensor
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 10 (01) ◽  
pp. 715-722
Author(s):  
Stella I. Orakwue ◽  
Nkolika O. Nwazor

Fungi have been identified as a major threat to crop production in the world. In this study, methods of improving the performance of plant disease detection and prediction using artificial neural network techniques are presented. The hyperspectral fungi dataset of 21 plant species were collected and trained using backpropagation algorithms of an artificial neural network to improve the conventional hyperspectral sensor. The system was modelled using self-defining equations and universal modelling diagrams and then implemented in the neural network toolbox in Matlab. The system was tested validated and the result showed a fungi detection accuracy of 96.61% and the percentage increment was 19.53%.


2022 ◽  
Vol 14 (1) ◽  
pp. 189
Author(s):  
Tae-Min Oh ◽  
Seungil Baek ◽  
Tae-Hyun Kong ◽  
Sooyoon Koh ◽  
Jaehun Ahn ◽  
...  

Titanium dioxide (TiO2) is a photocatalyst that can be used to remove nitrogen oxide (NOx). When applied to cementitious materials, it reacts with photons in sunlight or artificially generated light to reduce the concentration of particulate matter in the atmosphere. The concentration of TiO2 applied to the cementitious surface is difficult to quantify in a non-destructive manner after its application; however, knowledge of this residual amount is important for inspection and the evaluation of life expectancy. This study proposes a remote sensing technique that can estimate the concentration of TiO2 in the cementitious surface using a hyperspectral sensor. In the experiment, cement cores of varying TiO2 concentration and carbon contents were prepared and the surfaces were observed by TriOS RAMSES, a directional hyperspectral sensor. Machine-learning-based algorithms were then trained to estimate the TiO2 concentration under varying base material conditions. The results revealed that the best-performing algorithms produced TiO2 concentration estimates with a ~6% RMSE and a correlation close to 0.8. This study presents a robust machine learning model to estimate TiO2 and activated carbon concentration with high accuracy, which can be applied to abrasion monitoring of TiO2 and activated carbon in concrete structures.


2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Yiru Ma ◽  
Qiang Zhang ◽  
Xiang Yi ◽  
Lulu Ma ◽  
Lifu Zhang ◽  
...  

Unmanned aerial vehicles (UAV) has been increasingly applied to crop growth monitoring due to their advantages, such as their rapid and repetitive capture ability, high resolution, and low cost. LAI is an important parameter for evaluating crop canopy structure and growth without damage. Accurate monitoring of cotton LAI has guiding significance for nutritional diagnosis and the accurate fertilization of cotton. This study aimed to obtain hyperspectral images of the cotton canopy using a UAV carrying a hyperspectral sensor and to extract effective information to achieve cotton LAI monitoring. In this study, cotton field experiments with different nitrogen application levels and canopy spectral images of cotton at different growth stages were obtained using a UAV carrying hyperspectral sensors. Hyperspectral reflectance can directly reflect the characteristics of vegetation, and vegetation indices (VIs) can quantitatively describe the growth status of plants through the difference between vegetation in different band ranges and soil backgrounds. In this study, canopy spectral reflectance was extracted in order to reduce noise interference, separate overlapping samples, and highlight spectral features to perform spectral transformation; characteristic band screening was carried out; and VIs were constructed using a correlation coefficient matrix. Combined with canopy spectral reflectance and VIs, multiple stepwise regression (MSR) and extreme learning machine (ELM) were used to construct an LAI monitoring model of cotton during the whole growth period. The results show that, after spectral noise reduction, the bands screened by the successive projections algorithm (SPA) are too concentrated, while the sensitive bands screened by the shuffled frog leaping algorithm (SFLA) are evenly distributed. Secondly, the calculation of VIs after spectral noise reduction can improve the correlation between vegetation indices and LAI. The DVI (540,525) correlation was the largest after standard normal variable transformation (SNV) pretreatment, with a correlation coefficient of −0.7591. Thirdly, cotton LAI monitoring can be realized only based on spectral reflectance or VIs, and the ELM model constructed by calculating vegetation indices after SNV transformation had the best effect, with verification set R2 = 0.7408, RMSE = 1.5231, and rRMSE = 24.33%, Lastly, the ELM model based on SNV-SFLA-SNV-VIs had the best performance, with validation set R2 = 0.9066, RMSE = 0.9590, and rRMSE = 15.72%. The study results show that the UAV equipped with a hyperspectral sensor has broad prospects in the detection of crop growth index, and it can provide a theoretical basis for precise cotton field management and variable fertilization.


2021 ◽  
Vol 13 (23) ◽  
pp. 4792
Author(s):  
Marion Jaud ◽  
Guillaume Sicot ◽  
Guillaume Brunier ◽  
Emma Michaud ◽  
Nicolas Le Dantec ◽  
...  

Hyper-DRELIO (Hyperspectral DRone for Environmental and LIttoral Observations) is a custom, mini-UAV (unmanned aerial vehicle) platform (<20 kg), equipped with a light push broom hyperspectral sensor combined with a navigation module measuring position and orientation. Because of the particularities of UAV surveys (low flight altitude, small spatial scale, and high resolution), dedicated pre-processing methods have to be developed when reconstructing hyperspectral imagery. This article presents light, easy-implementation, in situ methods, using only two Spectralon® and a field spectrometer, allowing performance of an initial calibration of the sensor in order to correct “vignetting effects” and a field standardization to convert digital numbers (DN) collected by the hyperspectral camera to reflectance, taking into account the time-varying illumination conditions. Radiometric corrections are applied to a subset of a dataset collected above mudflats colonized by pioneer mangroves in French Guiana. The efficiency of the radiometric corrections is assessed by comparing spectra from Hyper-DRELIO imagery to in situ spectrometer measurements above the intertidal benthic biofilm and mangroves. The shapes of the spectra were consistent, and the spectral angle mapper (SAM) distance was 0.039 above the benthic biofilm and 0.159 above the mangroves. These preliminary results provide new perspectives for quantifying and mapping the benthic biofilm and mangroves at the scale of the Guianese intertidal mudbanks system, given their importance in the coastal food webs, biogeochemical cycles, and the sediment stabilization.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7296
Author(s):  
Thomas Hänel ◽  
Thomas Jarmer ◽  
Nils Aschenbruck

A promising low-cost solution for monitoring spectral information, e.g., on agricultural fields, is that of wireless sensor networks. In contrast to remote sensing, these can achieve more continuous monitoring due to their long-term deployment and are less impacted by the atmosphere, making them a promising solution for the calibration of satellite data. In this paper, we explore an alternative approach for processing data from such a network. Hyperspectral sensors were found to be too complex for such a network. While previous work considered fusing the data from different multispectral sensors in order to derive hyperspectral data, we shift the assessment of the hyperspectral modeling in a separate preprocessing step based on machine learning. We then use the learned data as additional input while using identical multispectral sensors, further reducing the complexity of the sensors. Despite requiring careful parametrization, the approach delivers hyperspectral data of similar and in some cases even better quality.


Author(s):  
P. J. Olsoy ◽  
S. N. Barrett ◽  
B. C. Robb ◽  
J. S. Forbey ◽  
T. T. Caughlin ◽  
...  

Abstract. Sagebrush ecosystems (Artemisia spp.) face many threats including large wildfires and conversion to invasive annuals, and thus are the focus of intense restoration efforts across the western United States. Specific attention has been given to restoration of sagebrush systems for threatened herbivores, such as Greater Sage-Grouse (Centrocercus urophasianus) and pygmy rabbits (Brachylagus idahoensis), reliant on sagebrush as forage. Despite this, plant chemistry (e.g., crude protein, monoterpenes and phenolics) is rarely considered during reseeding efforts or when deciding which areas to conserve. Near-infrared spectroscopy (NIRS) has proven effective in predicting plant chemistry under laboratory conditions in a variety of ecosystems, including the sagebrush steppe. Our objectives were to demonstrate the scalability of these models from the laboratory to the field, and in the air with a hyperspectral sensor on an unoccupied aerial system (UAS). Sagebrush leaf samples were collected at a study site in eastern Idaho, USA. Plants were scanned with an ASD FieldSpec 4 spectroradiometer in the field and laboratory, and a subset of the same plants were imaged with a SteadiDrone Hexacopter UAS equipped with a Rikola hyperspectral sensor (HSI). All three sensors generated spectral patterns that were distinct among species and morphotypes of sagebrush at specific wavelengths. Lab-based NIRS was accurate for predicting crude protein and total monoterpenes (R2 = 0.7–0.8), but the same NIRS sensor in the field was unable to predict either crude protein or total monoterpenes (R2 < 0.1). The hyperspectral sensor on the UAS was unable to predict most chemicals (R2 < 0.2), likely due to a combination of too few bands in the Rikola HSI camera (16 bands), the range of wavelengths (500–900 nm), and small sample size of overlapping plants (n = 28–60). These results show both the potential for scaling NIRS from the lab to the field and the challenges in predicting complex plant chemistry with hyperspectral UAS. We conclude with recommendations for next steps in applying UAS to sagebrush ecosystems with a variety of new sensors.


2021 ◽  
Vol 7 (8) ◽  
pp. 136
Author(s):  
Mary B. Stuart ◽  
Andrew J. S. McGonigle ◽  
Matthew Davies ◽  
Matthew J. Hobbs ◽  
Nicholas A. Boone ◽  
...  

Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone’s abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.


Author(s):  
M. Urai ◽  
S. Tsuchida ◽  
S. Yamamoto ◽  
T. Tachikawa ◽  
A. Iwasaki ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (13) ◽  
pp. 2606
Author(s):  
Nicolas Francos ◽  
Nunzio Romano ◽  
Paolo Nasta ◽  
Yijian Zeng ◽  
Brigitta Szabó ◽  
...  

Water infiltration rate (WIR) into the soil profile was investigated through a comprehensive study harnessing spectral information of the soil surface. As soil spectroscopy provides invaluable information on soil attributes, and as WIR is a soil surface-dependent property, field spectroscopy may model WIR better than traditional laboratory spectral measurements. This is because sampling for the latter disrupts the soil-surface status. A field soil spectral library (FSSL), consisting of 114 samples with different textures from six different sites over the Mediterranean basin, combined with traditional laboratory spectral measurements, was created. Next, partial least squares regression analysis was conducted on the spectral and WIR data in different soil texture groups, showing better performance of the field spectral observations compared to traditional laboratory spectroscopy. Moreover, several quantitative spectral properties were lost due to the sampling procedure, and separating the samples according to texture gave higher accuracies. Although the visible near-infrared–shortwave infrared (VNIR–SWIR) spectral region provided better accuracy, we resampled the spectral data to the resolution of a Cubert hyperspectral sensor (VNIR). This hyperspectral sensor was then assembled on an unmanned aerial vehicle (UAV) to apply one selected spectral-based model to the UAV data and map the WIR in a semi-vegetated area within the Alento catchment, Italy. Comprehensive spectral and WIR ground-truth measurements were carried out simultaneously with the UAV–Cubert sensor flight. The results were satisfactorily validated on the ground using field samples, followed by a spatial uncertainty analysis, concluding that the UAV with hyperspectral remote sensing can be used to map soil surface-related soil properties.


2021 ◽  
Vol 69 (4) ◽  
pp. 336-344
Author(s):  
Florian Becker ◽  
Andreas Backhaus ◽  
Felix Johrden ◽  
Merle Flitter

Abstract Hyperspectral sensor systems play a key role in the automation of work processes in the farming industry. Non-invasive measurements of plants allow for an assessment of the vitality and health state and can also be used to classify weeds or infected parts of a plant. However, one major downside of hyperspectral cameras is that they are not very cost-effective. In this paper, we show, that for specific tasks, multispectral systems with only a fraction of the wavelength bands and costs of a hyperspectral system can lead to promising results for regression and classification tasks. We conclude that for the ongoing automation efforts in the context of cognitive agriculture reduced multispectral systems are a viable alternative.


Sign in / Sign up

Export Citation Format

Share Document