finite dimensional hilbert space
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
S. Jalalzadeh ◽  
S. Abarghouei Nejad ◽  
P. V. R L Moniz

Abstract We investigate the holographic bound utilizing a homogeneous, isotropic, and non-relativistic neutral hydrogen gas present in the de Sitter space. Concretely, we propose to employ de Sitter holography intertwined with quantum deformation of the hydrogen atom using the framework of quantum groups. Particularly, the $\mathcal U_q(so(4))$ quantum algebra is used to construct a finite-dimensional Hilbert space of the hydrogen atom. As a consequence of the quantum deformation of the hydrogen atom, we demonstrate that the Rydberg constant is dependent on the de Sitter radius, $L_\Lambda$. This feature is then extended to obtain a finite-dimensional Hilbert space for the full set of all hydrogen atoms in the de Sitter universe. We then show that the dimension of the latter Hilbert space satisfies the holographic bound. We further show that the mass of a hydrogen atom $m_\text{atom}$, the total number of hydrogen atoms at the universe, $N$, and the retrieved dimension of the Hilbert space of neutral hydrogen gas, $\text{Dim}{\mathcal H}_\text{bulk}$, are related to the de Sitter entropy, $S_\text{dS}$, the Planck mass, $m_\text{Planck}$, the electron mass, $m_\text{e}$, and the proton mass $m_\text{p}$, by $m_\text{atom}\simeq m_\text{Planck}S_\text{dS}^{-\frac{1}{6}}$, $N\simeq S_\text{dS}^\frac{2}{3}$ and $\text{Dim}{\mathcal H}_\text{bulk}=2^{\frac{m_\text{e}}{m_\text{p}}\alpha^2S_\text{dS}}$, respectively.


2021 ◽  
Vol 28 (02) ◽  
Author(s):  
Xiuhong Sun ◽  
Yuan Li

In this note, we mainly study the necessary and sufficient conditions for the complete positivity of generalizations of depolarizing and transpose-depolarizing channels. Specifically, we define [Formula: see text] and [Formula: see text], where [Formula: see text] (the set of all bounded linear operators on the finite-dimensional Hilbert space [Formula: see text] is given and [Formula: see text] is the transpose of [Formula: see text] in a fixed orthonormal basis of [Formula: see text] First, we show that [Formula: see text] is completely positive if and only if [Formula: see text] is a positive map, which is equivalent to [Formula: see text] Moreover, [Formula: see text] is a completely positive map if and only if [Formula: see text] and [Formula: see text] At last, we also get that [Formula: see text] is a completely positive map if and only if [Formula: see text] with [Formula: see text] for all [Formula: see text] where [Formula: see text] are eigenvalues of [Formula: see text].


2021 ◽  
Vol 2021 (02) ◽  
pp. 0205
Author(s):  
Terry Bollinger

In 1980, Russian mathematician Yuri Manin published Computable and Uncomputable. On pages 14 and 15 of his introduction, Manin suggests that “Molecular biology furnishes examples of the behavior of natural (not engineered by humans) systems which we have to describe in terms initially devised for discrete automata.” Manin then describes the remarkable energy efficiency of naturally occurring biomolecular processes such as DNA replication. He proposes modeling such behaviors in terms of unitary rotations in a finite-dimensional Hilbert space. The decomposition of such systems then corresponds to the tensor product decomposition of the state space, that is, to quantum entanglement. Manin’s initial focus on biological molecules as examples of highly energy-efficient quantum automata is unique among quantum computing’s founding figures since both he and other early leaders quickly moved to the then-new and exciting concept of von Neumann automata. The von Neumann formalism reinterpreted molecular quantum computing in terms of qubits, which made it possible to imagine the power of quantum computing as not much more than a superposition of virtual binary computers. This paper provides the original excerpt of Manin’s molecular computing argument. A useful analytical feature of Manin’s pre-von-Neumann model of quantum computation is its openness to new formalisms that avoid accidentally making classical physics dominant over the quantum world by expressing quantum states only in terms of concepts such as automata that assume extreme classical precision and complexity.


Quanta ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 22-36
Author(s):  
George Androulakis ◽  
Ryan McGaha

Gudder, in a recent paper, defined a candidate entanglement measure which is called the entanglement number. The entanglement number is first defined on pure states and then it extends to mixed states by the convex roof construction. In Gudder's article it was left as an open problem to show that Optimal Pure State Ensembles (OPSE) exist for the convex roof extension of the entanglement number from pure to mixed states. We answer Gudder's question in the affirmative, and therefore we obtain that the entanglement number vanishes only on the separable states. More generally we show that OPSE exist for the convex roof extension of any function that is norm continuous on the pure states of a finite dimensional Hilbert space. Further we prove that the entanglement number is an LOCC monotone, (and thus an entanglement measure), by using a criterion that was developed by Vidal in 2000. We present a simplified proof of Vidal's result where moreover we use an interesting point of view of tree representations for LOCC communications. Lastly, we generalize Gudder's entanglement number by producing a monotonic family of entanglement measures which converge in a natural way to the entropy of entanglement.Quanta 2020; 9: 22–36.


2020 ◽  
Vol 20 (4) ◽  
pp. 727-737 ◽  
Author(s):  
Petr N. Vabishchevich

AbstractIn numerical solving boundary value problems for parabolic equations, two- or three-level implicit schemes are in common use. Their computational implementation is based on solving a discrete elliptic problem at a new time level. For this purpose, various iterative methods are applied to multidimensional problems evaluating an approximate solution with some error. It is necessary to ensure that these errors do not violate the stability of the approximate solution, i.e., the approximate solution must converge to the exact one. In the present paper, these questions are investigated in numerical solving a Cauchy problem for a linear evolutionary equation of first order, which is considered in a finite-dimensional Hilbert space. The study is based on the general theory of stability (well-posedness) of operator-difference schemes developed by Samarskii. The iterative methods used in the study are considered from the same general positions.


2020 ◽  
Vol 35 (26) ◽  
pp. 2050158
Author(s):  
Chang Liu ◽  
David A. Lowe

We propose a holographic map between Einstein gravity coupled to matter in a de Sitter background and large N quantum mechanics of a system of spins. Holography maps a spin model with a finite-dimensional Hilbert space defined on a version of the stretched horizon into bulk gravitational dynamics. The full Hamiltonian of the spin model contains a nonlocal piece which generates chaotic dynamics, widely conjectured to be a necessary part of quantum gravity, and a local piece which recovers the perturbative spectrum in the bulk.


2020 ◽  
Vol 36 (36) ◽  
pp. 400-410
Author(s):  
Matteo Polettini ◽  
Albrecht Böttcher

The paper is devoted to results connecting the eigenvalues and singular values of operators composed by $P^\ast G P$ with those composed in the same way by $QG^{−1}Q^\ast$. Here $P +Q = I$ are skew complementary projections on a finite-dimensional Hilbert space and $G$ is a positive definite linear operator on this space. Also discussed are graph theoretic interpretations of one of the results.


2019 ◽  
Vol 09 (02) ◽  
pp. 111-121
Author(s):  
Semiu Oladipupo Oladejo ◽  
Adediran Dauda Adeshola ◽  
Adedayo David Adeniyi

2019 ◽  
Vol 7 ◽  
Author(s):  
WILLIAM SLOFSTRA

We construct a linear system nonlocal game which can be played perfectly using a limit of finite-dimensional quantum strategies, but which cannot be played perfectly on any finite-dimensional Hilbert space, or even with any tensor-product strategy. In particular, this shows that the set of (tensor-product) quantum correlations is not closed. The constructed nonlocal game provides another counterexample to the ‘middle’ Tsirelson problem, with a shorter proof than our previous paper (though at the loss of the universal embedding theorem). We also show that it is undecidable to determine if a linear system game can be played perfectly with a finite-dimensional strategy, or a limit of finite-dimensional quantum strategies.


Sign in / Sign up

Export Citation Format

Share Document