specific mrna
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 62)

H-INDEX

63
(FIVE YEARS 6)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 151
Author(s):  
Kenta Nagahori ◽  
Ning Qu ◽  
Miyuki Kuramasu ◽  
Yuki Ogawa ◽  
Daisuke Kiyoshima ◽  
...  

Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11,Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin,ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 146
Author(s):  
Kenta Nagahori ◽  
Ning Qu ◽  
Miyuki Kuramasu ◽  
Yuki Ogawa ◽  
Daisuke Kiyoshima ◽  
...  

Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11, Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin, ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.


2021 ◽  
Vol 118 (52) ◽  
pp. e2109256118
Author(s):  
Sean A. Dilliard ◽  
Qiang Cheng ◽  
Daniel J. Siegwart

Lipid nanoparticles (LNPs) are a clinically mature technology for the delivery of genetic medicines but have limited therapeutic applications due to liver accumulation. Recently, our laboratory developed selective organ targeting (SORT) nanoparticles that expand the therapeutic applications of genetic medicines by enabling delivery of messenger RNA (mRNA) and gene editing systems to non-liver tissues. SORT nanoparticles include a supplemental SORT molecule whose chemical structure determines the LNP’s tissue-specific activity. To understand how SORT nanoparticles surpass the delivery barrier of liver hepatocyte accumulation, we studied the mechanistic factors which define their organ-targeting properties. We discovered that the chemical nature of the added SORT molecule controlled biodistribution, global/apparent pKa, and serum protein interactions of SORT nanoparticles. Additionally, we provide evidence for an endogenous targeting mechanism whereby organ targeting occurs via 1) desorption of poly(ethylene glycol) lipids from the LNP surface, 2) binding of distinct proteins to the nanoparticle surface because of recognition of exposed SORT molecules, and 3) subsequent interactions between surface-bound proteins and cognate receptors highly expressed in specific tissues. These findings establish a crucial link between the molecular composition of SORT nanoparticles and their unique and precise organ-targeting properties and suggest that the recruitment of specific proteins to a nanoparticle’s surface can enable drug delivery beyond the liver.


2021 ◽  
Vol 22 (21) ◽  
pp. 11618
Author(s):  
Anna L. Schorr ◽  
Marco Mangone

Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1675
Author(s):  
Magdalena M. Żak ◽  
Lior Zangi

Advances in the using in vitro transcribed (IVT) modRNA in the past two decades, especially the tremendous recent success of mRNA vaccines against SARS-CoV-2, have brought increased attention to IVT mRNA technology. Despite its well-known use in infectious disease vaccines, IVT modRNA technology is being investigated mainly in cancer immunotherapy and protein replacement therapy, with ongoing clinical trials in both areas. One of the main barriers to progressing mRNA therapeutics to the clinic is determining how to deliver mRNA to target cells and protect it from degradation. Over the years, many different vehicles have been developed to tackle this issue. Desirable vehicles must be safe, stable and preferably organ specific for successful mRNA delivery to clinically relevant cells and tissues. In this review we discuss various mRNA delivery platforms, with particular focus on attempts to create organ-specific vehicles for therapeutic mRNA delivery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Valentina Fajner ◽  
Fabio Giavazzi ◽  
Simona Sala ◽  
Amanda Oldani ◽  
Emanuele Martini ◽  
...  

AbstractSpecialised ribonucleoprotein (RNP) granules are a hallmark of polarized cells, like neurons and germ cells. Among their main functions is the spatial and temporal modulation of the activity of specific mRNA transcripts that allow specification of primary embryonic axes. While RNPs composition and role are well established, their regulation is poorly defined. Here, we demonstrate that Hecw, a newly identified Drosophila ubiquitin ligase, is a key modulator of RNPs in oogenesis and neurons. Hecw depletion leads to the formation of enlarged granules that transition from a liquid to a gel-like state. Loss of Hecw activity results in defective oogenesis, premature aging and climbing defects associated with neuronal loss. At the molecular level, reduced ubiquitination of the Fmrp impairs its translational repressor activity, resulting in altered Orb expression in nurse cells and Profilin in neurons.


2021 ◽  
Vol 22 (18) ◽  
pp. 9980
Author(s):  
Ganesh R. Koshre ◽  
Feba Shaji ◽  
Neeraja K. Mohanan ◽  
Nimmy Mohan ◽  
Jamshaid Ali ◽  
...  

Star-PAP is a non-canonical poly(A) polymerase that selects mRNA targets for polyadenylation. Yet, genome-wide direct Star-PAP targets or the mechanism of specific mRNA recognition is still vague. Here, we employ HITS-CLIP to map the cellular Star-PAP binding landscape and the mechanism of global Star-PAP mRNA association. We show a transcriptome-wide association of Star-PAP that is diminished on Star-PAP depletion. Consistent with its role in the 3′-UTR processing, we observed a high association of Star-PAP at the 3′-UTR region. Strikingly, there is an enrichment of Star-PAP at the coding region exons (CDS) in 42% of target mRNAs. We demonstrate that Star-PAP binding de-stabilises these mRNAs indicating a new role of Star-PAP in mRNA metabolism. Comparison with earlier microarray data reveals that while UTR-associated transcripts are down-regulated, CDS-associated mRNAs are largely up-regulated on Star-PAP depletion. Strikingly, the knockdown of a Star-PAP coregulator RBM10 resulted in a global loss of Star-PAP association on target mRNAs. Consistently, RBM10 depletion compromises 3′-end processing of a set of Star-PAP target mRNAs, while regulating stability/turnover of a different set of mRNAs. Our results establish a global profile of Star-PAP mRNA association and a novel role of Star-PAP in the mRNA metabolism that requires RBM10-mRNA association in the cell.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256739
Author(s):  
Walifa Waqar ◽  
Sidra Asghar ◽  
Sobia Manzoor

Background & aims Among the multiplicity of factors involved in rising incidence of hepatocellular carcinoma (HCC)-the second deadliest cancer, late diagnosis of early-stage HCC nodules originating from late-stage cirrhotic nodules is the most crucial. In recent years, Tumor-educated platelets (TEPs) have emerged as a strong multimodal tool to be used in liquid-biopsy of cancers because of changes in their mRNA content. This study assessed the reliability of selected mRNA repertoire of platelets as biomarkers to differentiate early HCC from late-stage cirrhotic nodules. Methods Quantitative real time PCR (qRT-PCR) was used to evaluate expression levels of selected platelets-specific mRNA between HCC patients compared to cirrhosis patients. ROC curve analysis assessed the sensitivity and specificity of the biomarkers. Results RhoA, CTNNB1 and SPINK1 showed a significant 3.3-, 3.2- and 3.18-folds upregulation, respectively, in HCC patients compared to cirrhosis patients while IFITM3 and SERPIND1 presented a 2.24-fold change. Strikingly, CD41+ platelets also demonstrated a marked difference of expression in HCC and cirrhosis groups. Conclusions Our study reports liquid biopsy-based platelets mRNA signature for early diagnosis of HCC from underlying cirrhotic nodules. Moreover, differential expression of CD41+ platelets in two groups provides new insights into a probable link between CD41 expression on platelets with the progression of cirrhosis to HCC.


Sign in / Sign up

Export Citation Format

Share Document