pharmacologic inhibition
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 135)

H-INDEX

59
(FIVE YEARS 7)

2022 ◽  
Vol 5 (4) ◽  
pp. e202101078
Author(s):  
Tunahan Ergünay ◽  
Özgecan Ayhan ◽  
Arda B Celen ◽  
Panagiota Georgiadou ◽  
Emre Pekbilir ◽  
...  

CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme’s turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ji Yeon Lee ◽  
Jae-Yeon Yang ◽  
Sang Wan Kim

BackgroundRecently, lineage-tracing studies demonstrated that parathyroid hormone and anti-sclerostin antibody (Scl-Ab) can convert bone lining cells (BLCs) into active osteoblasts. However, BLCs might also be differentiated into other lineages. Here we investigated whether BLCs could differentiate into bone marrow adipocytes (BMAds) and whether Scl-Ab could suppress this process.MethodsDmp1-CreERt2:mTmG mice were injected with 0.5 mg of 4-hydroxytamoxifen once weekly from postnatal week 4 to week 8. The mice were treated with either vehicle or rosiglitazone for 8 weeks (weeks 12–20). Moreover, they were administered either vehicle or Scl-Ab (50 mg/kg) twice weekly for 4 weeks (weeks 16–20, N = 4–6/group). We chased the GFP+ cells from the endosteal surface to the bone marrow (BM) of the femur. Using immunohistochemical staining, the numbers of perilipin+ or GFP+/perilipin double+ cells in the BM were quantified. In addition, serum N-terminal propeptide of type I procollagen (P1NP) levels were measured at each time point, and bone mass was analyzed at 20 weeks using micro-computed tomography.ResultsScl-Ab administration significantly reversed the decreases in bone parameters induced by rosiglitazone. Plump GFP+ cells, presumably active osteoblasts, and extremely flat GFP+ cells, presumably BLCs, were present on the endosteal surface of the femur at 8 and 12 weeks, respectively, in line with prior findings. When we chased the GFP+ cells, rosiglitazone significantly increased the number of GFP/perilipin double+ BMAds compared to the effects of the vehicle (P < 0.001), and overlapping Scl-Ab administration decreased the number of GFP/perilipin double + BMAd compared to rosiglitazone alone (P < 0.001). In addition, we found that osteoblast lineage cells such as BLCs might express PPARγ on immunohistochemical staining. When rosiglitazone was administered to Rip-Cre:mTmG mice, GFP+ cells were not present on the endosteal surface or in the BM of the femur; however, they were present in the pancreas.ConclusionBLCs could be sources of BMAds, and rosiglitazone could stimulate the differentiation of osteoblast lineage cells into BMAds. Suppression of the differentiation of osteoblast lineage cells into BMAds might contribute to anabolic effects resulting from the pharmacologic inhibition of sclerostin.


2021 ◽  
Author(s):  
Abraham L. Bayer ◽  
Jodie Pietruska ◽  
Jaymes Farrell ◽  
Siobhan McRee ◽  
Pilar Alcaide ◽  
...  

AbstractCellular senescence is a carefully regulated process of proliferative arrest accompanied by numerous functional and morphologic changes. Senescence allows damaged cells to avoid neoplastic proliferation, however induction of the senescence-associated secretory phenotype (SASP) can promote tumor growth. The complexity of the senescence response may limit the efficacy of anti-neoplastic agents, such as CDK4/6 inhibitors (Cdk4/6i), that induce a senescence-like, non-proliferative state in tumor cells. The AKT kinase family plays an important role in cellular growth and division, and is commonly hyperactive in many cancers including melanoma. AKT activity has also been implicated in regulation of senescence. The three AKT isoforms play both redundant and unique roles in tumorigenesis and cancer progression. To interrogate the role of AKT isoforms in the induction of cellular senescence by Cdk4/6i, we generated isoform specific AKT knockout human BRAF-V600E mutated melanoma cell lines. We found that the CDK4/6i Palbociclib induced a form of senescence in these cells that was dependent on AKT1. As a potential mechanism, we evaluated the activity of the cGAS-STING pathway, recently implicated in cellular senescence. While we showed cGAS-STING function to be dependent on AKT1, pharmacologic inhibition of either cGAS or STING had little effect on senescence. However, we found SASP factors to require NF-kB function, in part dependent on a stimulatory phosphorylation of IKKα by AKT1 previously reported in other models. In summary, we provide the first evidence of a novel, isoform specific role for AKT1 in therapy-induced senescence in human melanoma cells acting through NF-kB but independent of cGAS-STING.


Author(s):  
Ning Jiang ◽  
Yihao Liao ◽  
Miaomiao Wang ◽  
Youzhi Wang ◽  
Keke Wang ◽  
...  

Abstract Background The incidence of bladder urothelial carcinoma (UC), a common malignancy of the urinary tract, is approximately three times higher in men than in women. High expression of the mitotic kinase BUB1 is associated with the occurrence and development of several cancers, although the relationship between BUB1 and bladder tumorigenesis remains unclear. Methods Using a microarray approach, we found increased BUB1 expression in human BCa. The association between BUB1 and STAT3 phosphorylation was determined through molecular and cell biological methods. We evaluated the impact of pharmacologic inhibition of BUB1 kinase activity on proliferation and BCa progression in vitro and in vivo. Results In this study, we found that BUB1 expression was increased in human bladder cancer (BCa). We further identified through a series of molecular and cell biological approaches that BUB1 interacted directly with STAT3 and mediated the phosphorylation of STAT3 at Ser727. In addition, the findings that pharmacologic inhibition of BUB1 kinase activity significantly suppressed BCa cell proliferation and the progression of bladder cancer in vitro and in vivo were further verified. Finally, we found that the BUB1/STAT3 complex promoted the transcription of STAT3 target genes and that depletion of BUB1 and mutation of the BUB1 kinase domain abrogated this transcriptional activity, further highlighting the critical role of kinase activity in the activation of STAT3 target genes. A pharmacological inhibitor of BUB1 (2OH-BNPP1) was able to significantly inhibit the growth of BCa cell xenografts. Conclusion This study showed that the BUB1 kinase drives the progression and proliferation of BCa by regulating the transcriptional activation of STAT3 signaling and may be an attractive candidate for therapeutic targeting in BCa.


2021 ◽  
Vol 11 ◽  
Author(s):  
Carolina J. García García ◽  
Ariana C. Acevedo Diaz ◽  
Neeraj Kumari ◽  
Suman Govindaraju ◽  
Marimar de la Cruz Bonilla ◽  
...  

Radiation therapy for abdominal tumors is challenging because the small intestine is exquisitely radiosensitive. Unfortunately, there are no FDA-approved therapies to prevent or mitigate GI radiotoxicity. The EGLN protein family are oxygen sensors that regulate cell survival and metabolism through the degradation of hypoxia-inducible factors (HIFs). Our group has previously shown that stabilization of HIF2 through genetic deletion or pharmacologic inhibition of the EGLNs mitigates and protects against GI radiotoxicity in mice by improving intestinal crypt stem cell survival. Here we aimed to elucidate the molecular mechanisms by which HIF2 confers GI radioprotection. We developed duodenal organoids from mice, transiently overexpressed non-degradable HIF2, and performed bulk RNA sequencing. Interestingly, HIF2 upregulated known radiation modulators and genes involved in GI homeostasis, including Wnt5a. Non-canonical Wnt5a signaling has been shown by other groups to improve intestinal crypt regeneration in response to injury. Here we show that HIF2 drives Wnt5a expression in multiple duodenal organoid models. Luciferase reporter assays performed in human cells showed that HIF2 directly activates the WNT5A promoter via a hypoxia response element. We then evaluated crypt regeneration using spheroid formation assays. Duodenal organoids that were pre-treated with recombinant Wnt5a had a higher cryptogenic capacity after irradiation, compared to vehicle-treated organoids. Conversely, we found that Wnt5a knockout decreased the cryptogenic potential of intestinal stem cells following irradiation. Treatment with recombinant Wnt5a prior to irradiation rescued the cryptogenic capacity of Wnt5a knockout organoids, indicating that Wnt5a is necessary and sufficient for duodenal radioprotection. Taken together, our results suggest that HIF2 radioprotects the GI tract by inducing Wnt5a expression.


2021 ◽  
Author(s):  
Jia Yu ◽  
Pei Ju Liao ◽  
Weijun Xu ◽  
Julie R. Jones ◽  
David B. Everman ◽  
...  

Wnt signaling is essential for normal development and is a therapeutic target in cancer. The enzyme PORCN, or porcupine, is a membrane-bound O-acyltransferase (MBOAT) that is required for the post-translational modification of all Wnts, adding an essential mono-unsaturated palmitoleic acid to a serine on the tip of Wnt hairpin 2. Inherited mutations in PORCN cause focal dermal hypoplasia, and therapeutic inhibition of PORCN slows the growth of Wnt-dependent cancers. Based on homology to mammalian MBOAT proteins we developed and validated a structural model of PORCN. The model accommodates palmitoleoyl-CoA and Wnt hairpin 2 in two tunnels in the conserved catalytic core, shedding light on the catalytic mechanism. The model predicts how previously uncharacterized human variants of uncertain significance can alter PORCN function. Drugs including ETC-159, IWP-L6 and LGK-974 dock in the PORCN catalytic site, providing insights into PORCN pharmacologic inhibition. This structural model enhances our mechanistic understanding of PORCN substrate recognition and catalysis as well as the inhibition of its enzymatic activity and can facilitate the development of improved inhibitors and the understanding of disease relevant PORCN mutants.


Endocrinology ◽  
2021 ◽  
Vol 163 (1) ◽  
Author(s):  
Ariane Lalonde-Larue ◽  
Alexandre Boyer ◽  
Esdras Corrêa Dos Santos ◽  
Derek Boerboom ◽  
Daniel J Bernard ◽  
...  

Abstract The Hippo transcriptional coactivators YAP and TAZ exert critical roles in morphogenesis, organ size determination and tumorigenesis in many tissues. Although Hippo kinase cascade activity was recently reported in the anterior pituitary gland in mice, the role of the Hippo effectors in regulating gonadotropin production remains unknown. The objective of this study was therefore to characterize the roles of YAP and TAZ in gonadotropin synthesis and secretion. Using a conditional gene targeting approach (cKO), we found that gonadotrope-specific inactivation of Yap and Taz resulted in increased circulating levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in adult male mice, along with increased testosterone levels and testis weight. Female cKO mice had increased circulating LH (but not FSH) levels, which were associated with a hyperfertility phenotype characterized by higher ovulation rates and larger litter sizes. Unexpectedly, the loss of YAP/TAZ did not appear to affect the expression of gonadotropin subunit genes, yet both basal and GnRH-induced LH secretion were increased in cultured pituitary cells from cKO mice. Likewise, pharmacologic inhibition of YAP binding to the TEAD family of transcription factors increased both basal and GnRH-induced LH secretion in LβT2 gonadotrope-like cells in vitro without affecting Lhb expression. Conversely, mRNA levels of ChgA and SgII, which encode key secretory granule cargo proteins, were decreased following pharmacologic inhibition of YAP/TAZ, suggesting a mechanism whereby YAP/TAZ regulate the LH secretion machinery in gonadotrope cells. Together, these findings represent the first evidence that Hippo signaling may play a role in regulating pituitary LH secretion.


2021 ◽  
Author(s):  
Macarena S Arrázola ◽  
Matías Lira ◽  
Gabriel Quiroz ◽  
Somya Iqbal ◽  
Samantha L Eaton ◽  
...  

Age is the main risk factor for cognitive impairment and the development of neurodegenerative diseases. In the aged brain, axonal degeneration is an early pathological event, preceding neuronal dysfunction and brain disabilities in humans, primates, rodents, and invertebrates. Necroptosis activation mediates degeneration of mechanical and chemically injured axons, but whether this pathway triggers axonal degeneration and cognitive impairment during brain aging has not been studied. Here we show that necroptosis is activated in the hippocampus during aging, especially in axonal tracts. Loss of the main necroptotic effector, Mlkl, was sufficient to delay age-associated axonal degeneration. Accordingly, aged Mlkl-KO mice also displayed a youthful phenotype at the synaptic and functional level, protecting against decreased synaptic transmission and memory decline. Short-term pharmacologic inhibition of necroptosis by targeting RIPK3 in aged mice, proved to be extraordinarily effective at reverting axonal degeneration and hippocampal-dependent functional impairment at the electrophysiological and behavioral level. Remarkably, a comprehensive quantitative proteomic analysis uncovered a set of aging hallmarks that were recovered in both, the genetic and pharmacologic models of necroptosis inhibition, including molecular biofunctions associated with brain rejuvenation. Taken together, these findings demonstrate that necroptosis contributes to the age-associated deterioration of axonal integrity, affecting hippocampal neuronal connectivity and cognitive function in aged individuals. We therefore propose necroptosis as an attractive target for the future development of geroprotective tools to treat age-related disabilities.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 506-506
Author(s):  
Christian Hurtz ◽  
Gerald Wertheim ◽  
John Chukinas ◽  
Joseph Patrick Loftus ◽  
Sung June Lee ◽  
...  

Abstract Background: KMT2A-rearranged (R) ALL is a high-risk disease with a frequency of 75% in infants and 10% in children and adults with ALL and is associated with chemoresistance, relapse, and poor survival. Current intensive multiagent chemotherapy regimens induce significant side effects, yet fail to cure many patients, demonstrating continued need for novel therapeutic approaches. We performed a kinome-wide CRISPR screen and identified that DYRK1A is specifically required for the survival of KMT2A-R ALL cell. DYRK1A is a member of the dual-specificity tyrosine phosphorylation-regulated kinase family and has been reported as negatively regulator of cell proliferation. Results: We performed a kinome-wide CRISPR screen in human ALL cell lines and PDX models and identified DYRK1A as a novel target in KMT2A-R ALL. DYRK1A is a serine-threonine kinase with a proposed, but poorly defined role in cell cycle regulation. We performed a meta-analysis of multiple ChIP-Seq experiments and identified that oncogenic KMT2A fusions directly bind to the DYRK1A promoter. Our RT-PCR and Western blot analyses of KMT2A-R ALL cells treated with a menin inhibitor (MI-503) to disrupt the transcriptional activity of the KMT2A-R complex resulted in the downregulation of DYRK1A, indicating that DYRK1A is directly regulated by the KMT2A fusion complex. We further observed that pharmacologic inhibition of DYRK1A with EHT1610 induced potent leukemic cell growth inhibition in vitro and in vivo, demonstrating that DYRK1A could be a new therapeutic target in KMT2A-R ALL cells. To further elucidate the mechanism of DYRK1A function, we treated several KMT2A-R ALL cell lines in vitro with EHT1610, which surprisingly resulted in the upregulation of MYC and hyperphosphorylation of the RAS/MAPK target ERK. Given that ERK hyperactivation stops B cell proliferation during early B cell development to allow them to rearrange their B cell receptor, we hypothesized that cell cycle inhibition upon ERK hyperactivation remains as a conserved mechanism of cell cycle regulation in KMT2A-R ALL. Strikingly, combining DYRK1A inhibition with the MEK inhibitor trametinib antagonistically rescued KMT2A-R ALL cell proliferation, indicating that ERK hyperactivation is the main driver of DYRK1A inhibitor mediated cell cycle arrest. Given that DYRK1A inhibitor does not induce apoptosis and cells restart cell proliferation after EHT1610 withdrawal we concluded that a DYRK1A monotherapy may not be an ideal new treatment option. However, it has been reported that increased MYC activity induces the accumulation of BIM in Burkitt's Lymphoma. Given the increased expression of MYC following DYRK1A inhibition we performed a new Western blot analysis and validated increased expression of BIM in our KMT2A-R ALL cell lines after EHT1610 treatment. To test if targeting the interaction of BIM with BCL2 will induce an apoptotic effect when combined with EHT1610, we treated four KMT2A-R ALL cell lines with increasing concentrations of EHT1610 and the BCL2 inhibitor venetoclax. Strikingly, the combination of DYRK1A inhibition with BCL2 inhibition synergistically killed KMT2A-R ALL cells. Conclusion: Our results validate DYRK1A as an important molecule to regulate cell proliferation via inhibition of MYC and ERK. Targeting DYRK1A results in the accumulation of BIM, which renders the cells sensitive to BCL2 inhibition via venetoclax. While further in vivo studies are needed, we predict that combining DYRK1A inhibition with venetoclax may be a novel precision medicine strategy for the treatment of KMT2A-R ALL. Figure 1 Figure 1. Disclosures Crispino: Forma Therapeutics: Research Funding; Scholar Rock: Research Funding; MPN Research Foundation: Membership on an entity's Board of Directors or advisory committees; Sierra Oncology: Consultancy. Tasian: Aleta Biotherapeutics: Consultancy; Gilead Sciences: Research Funding; Kura Oncology: Consultancy; Incyte Corporation: Research Funding. Carroll: Incyte Pharmaceuticals: Research Funding; Janssen Pharmaceutical: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document