specific signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 22 (22) ◽  
pp. 12370
Author(s):  
Ying Chen ◽  
Wenqing Xu ◽  
Yuan Yuan ◽  
Houyang Chen ◽  
Shuangyan Zheng ◽  
...  

Ketamine, which used to be widely applied in human and animal medicine as a dissociative anesthetic, has become a popular recreational drug because of its hallucinogenic effect. Our previous study preliminarily proved that ketamine could inhibit human sperm function by affecting intracellular calcium concentration ([Ca2+]i). However, the specific signaling pathway of [Ca2+]i induced by ketamine in human sperm is still not clear yet. Here, the N-methyl-d-aspartic acid (NMDA) receptor was detected in the tail region of human sperm. Its physiological ligand, NMDA (50 μM), could reverse ketamine’s inhibitory effect on human sperm function, and its antagonist, MK801 (100 μM), could restrain the effect of NMDA. The inhibitory effect caused by 4 mM ketamine or 100 μM MK801 on [Ca2+]i, which is a central factor in the regulation of human sperm function, could also be recovered by 50 μM NMDA. The results suggest that the NMDA receptor is probably involved in the inhibitory effect of ketamine on human sperm functions.


2021 ◽  
Vol 27 ◽  
Author(s):  
Anna Sebestyén ◽  
László Kopper ◽  
Titanilla Dankó ◽  
József Tímár

Cancer hypoxia, recognized as one of the most important hallmarks of cancer, affects gene expression, metabolism and ultimately tumor biology-related processes. Major causes of cancer hypoxia are deficient or inappropriate vascularization and systemic hypoxia of the patient (frequently induced by anemia), leading to a unique form of genetic reprogramming by hypoxia induced transcription factors (HIF). However, constitutive activation of oncogene-driven signaling pathways may also activate hypoxia signaling independently of oxygen supply. The consequences of HIF activation in tumors are the angiogenic phenotype, a novel metabolic profile and the immunosuppressive microenvironment. Cancer hypoxia and the induced adaptation mechanisms are two of the major causes of therapy resistance. Accordingly, it seems inevitable to combine various therapeutic modalities of cancer patients by existing anti-hypoxic agents such as anti-angiogenics, anti-anemia therapies or specific signaling pathway inhibitors. It is evident that there is an unmet need in cancer patients to develop targeted therapies of hypoxia to improve efficacies of various anti-cancer therapeutic modalities. The case has been opened recently due to the approval of the first-in-class HIF2α inhibitor.


2020 ◽  
Author(s):  
yinghua zhao ◽  
Bo Fu ◽  
Pu Chen ◽  
Qinggang Li ◽  
Qing Ouyang ◽  
...  

Abstract BACKGROUNDMesangial proliferative glomerulonephritis is characterized by the proliferation of mesangial cells (MCs). Endothelial cells (ECs) are affected by signals from MCs, resulting in capillary proliferation, but the specific signaling pathway associated with this activity remains unclear.RESULTSIn this study, the expression of PCNA, RECA-1 and CD34 in the glomeruli increased on the 7th day after anti-Thy-1 nephritis establishment, indicating the occurrence of ECs proliferation. After coculturing MCs and ECs in vitro, we observed that activated MCs could promote ECs proliferation, migration and α-SMA expression. Moreover, activated ECs had the same effects on MCs. RT-qPCR showed that activated MCs could increasingly secrete VEGFA, and Angpt2 expression in VEGFA-activated ECs was enhanced. Considering that Angpt2-mediated inhibition of ECs surface receptor Tie2 phosphorylation causes ECs proliferation, we hypothesized that VEGFA/VEGFR2 and Angpt2/Tie2 signaling is involved in the interaction between MCs and ECs. Our results showed that blocking VEGFA or adding the Angpt2 antagonist Angpt1 to the coculture system decreased the number of EdU-positive cells,Angpt2,p-VEGFR2 and p-MAPK expression, but increased p-Tie2 in ECs. To determine whether Angpt1 could effectively alleviate the pathological changes of anti-Thy-1 nephritis, we performed Vasculotide (Angpt1 mimic peptide) treatment assays in vivo. The results confirmed that the addition of Vasculotide could effectively reduce PCNA, RECA-1 and α-SMA expression and promote p-Tie2.CONCLUSIONIn summary, the study showed that the VEGFA/VEGFR2 and Angpt2/Tie2 signaling pathway mediate interactions between MCs and ECs, providing an important theoretical basis for the treatment of mesangial proliferative glomerulonephritis.


2019 ◽  
Author(s):  
Tyler A. Square ◽  
David Jandzik ◽  
James L. Massey ◽  
Marek Romášek ◽  
Haley P. Stein ◽  
...  

AbstractThe neural crest (NC) is a vertebrate-specific embryonic tissue that forms an array of clade-defining adult features. A key step in the formation of these diverse derivatives is the partitioning of NC cells into subpopulations with distinct migration routes and potencies1. The evolution of these developmental modules is poorly understood. Endothelin (Edn) signaling is unique to vertebrates, and performs various functions in different NC subpopulations2–5. To better understand the evolution of NC patterning, we used CRISPR/Cas9-driven mutagenesis to disrupt Edn receptors, ligands, and Dlx transcription factors in the sea lamprey, Petromyzon marinus. Lampreys and modern gnathostomes last shared a common ancestor 500 million years ago6. Thus, comparisons between the two groups can identify deeply conserved and divergent features of vertebrate development. Using Xenopus laevis to facilitate side-by-side analyses, we show here that lamprey and gnathostomes display fundamental differences in Edn signaling function. Unlike gnathostomes, both lamprey Ednrs cooperate during oropharyngeal skeleton development. Furthermore, neither paralog regulates hand transcription factors, which are required for mandible development in gnathostomes. We also identify conserved roles for Edn signaling in dlx gene regulation, pigment cell, and heart development. Together our results illustrate the stepwise neofunctionalization and specialization of this vertebrate-specific signaling pathway, and suggest key intermediate stages in the early evolution of the NC.


Zebrafish ◽  
2016 ◽  
Vol 13 (6) ◽  
pp. 541-544 ◽  
Author(s):  
Kitti Csályi ◽  
Dávid Fazekas ◽  
Tamás Kadlecsik ◽  
Dénes Türei ◽  
Leila Gul ◽  
...  

2016 ◽  
Author(s):  
Kitti Csályi ◽  
Dávid Fazekas ◽  
Tamás Kadlecsik ◽  
Dénes Türei ◽  
Leila Gul ◽  
...  

Understanding living systems requires an in depth knowledge of the signaling networks that drive cellular homeostasis, regulate intercellular communication and contribute to cell fates during development. Several resources exist to provide high-throughput datasets or manually curated interaction information from human or invertebrate model organisms. We previously developed SignaLink, a uniformly curated, multi-layered signaling resource containing information for human and for the model organisms nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster. Until now, the use of the SignaLink database for zebrafish pathway analysis was limited. To overcome this limitation we created SignaFish (http://signafish.org), a fish-specific signaling resource, built using the concept of SignaLink. SignaFish contains more than 200 curation based signaling interactions, 132 further interactions listed in other resources, and it also lists potential miRNA based regulatory connections for 7 major signaling pathways. From the SignaFish website, users can reach other web resources, such as ZFIN. SignaFish provides signaling or signaling-related interactions that can be examined for each gene, or downloaded for each signaling pathway. We believe that the SignaFish resource will serve as a novel navigating point for experimental design and evaluation for the zebrafish community and for researchers focusing on non-model fish species, such as cyclids.


Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 626-636 ◽  
Author(s):  
Brian Estevez ◽  
Kyungho Kim ◽  
M. Keegan Delaney ◽  
Aleksandra Stojanovic-Terpo ◽  
Bo Shen ◽  
...  

Key Points GPIb-IX signaling cooperates with PAR signaling to promote platelet response to low concentrations of thrombin, which are important in vivo. Thrombin induces a GPIb-IX–specific signaling pathway that requires the cytoplasmic domain of GPIbα, 14-3-3 protein, Rac1, and LIMK1.


Sign in / Sign up

Export Citation Format

Share Document