potential tumor suppressor
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 34)

H-INDEX

33
(FIVE YEARS 4)

Neoplasma ◽  
2021 ◽  
Author(s):  
Jiao Xiang ◽  
Xiao-Qiang Gao ◽  
Xiang-Ling Chen ◽  
Yin-Ying Lu

2021 ◽  
Vol 22 (22) ◽  
pp. 12497
Author(s):  
Lipeng Gan ◽  
Qilin Shangguan ◽  
Fang Zhang ◽  
Xiaomei Tong ◽  
Dandan Qi ◽  
...  

Hepatitis B virus (HBV) infection is closely related to hepatocellular carcinoma (HCC) development. To investigate the mechanism of HBV causing HCC, we previously analyzed the transcription of the HBV-transgenic cell line HepG2-4D14 and parental HepG2 cells and identified a subset of long noncoding RNAs (lncRNAs) differentially expressed between them. In this study, we focus on lncRNA LINC01010, as it is significantly downregulated in HepG2-4D14 cells and in liver tissues of HCC patients, and positively correlated with survival. We found that HBV-encoded HBx can reduce the transcription of LINC01010. Functional analysis showed that the overexpression of LINC01010 inhibits proliferation, migration and invasion of HepG2 cells while the knockdown of LINC01010 promotes these processes. By taking the approach of RNA immunoprecipitation (RIP) and mass spectrometry, we identified that LINC01010 can interact with vimentin. Further studies demonstrated that LINC01010 negatively affects the vimentin network extension and causes more rapid subunit exchange and lower stability of vimentin filaments. In addition, LINC01010 can reduce the amount of insoluble vimentin within cells, which suggests that LINC01010 interfers with vimentin polymerization. These data indicate that LINC01010 can inhibit the assembly of vimentin filament. Thus, we revealed that HBV HBx-downregulated LINC01010, which suppresses cell proliferation and migration by negatively regulating the formation of vimentin filament. Taken together, LINC01010 is a potential tumor suppressor that may restrain HBV-related HCC development.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
Xiaoli Pang ◽  
Kexin Huang ◽  
Qianqian Zhang ◽  
Yujiao Zhang ◽  
Junqi Niu

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mingze Lu ◽  
Xiaowen Fan ◽  
Weilin Liao ◽  
Yijiao Li ◽  
Lijie Ma ◽  
...  

Abstract Background Lung adenocarcinoma (LAC) is the predominant histologic subtype of lung cancer and has a complicated pathogenesis with high mortality. The purpose of this study was to identify differentially expressed genes (DEGs) with prognostic value and determine their underlying mechanisms. Methods Gene expression data of GSE27262 and GSE118370 were acquired from the Gene Expression Omnibus database, enrolling 31 LAC and 31 normal tissues. Common DEGs between LAC and normal tissues were identified using the GEO2R tool and Venn diagram software. Next, the Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to analyze the Gene Ontology and Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. Then, protein-protein interaction (PPI) network of DEGs was visualized by Cytoscape with Search Tool for the Retrieval of Interacting Genes and central genes were identified via Molecular Complex Detection. Furthermore, the expression and prognostic information of central genes were validated via Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan-Meier analysis, respectively. Finally, DAVID, real-time PCR and immunohistochemistry were applied to re-analyze the identified genes, which were also further validated in two additional datasets from ArrayExpress database. Results First, 189 common DEGs were identified among the two datasets, including 162 downregulated and 27 upregulated genes. Next, Gene Ontology and KEGG pathway analysis of the DEGs were conducted through DAVID. Then, PPI network of DEGs was constructed and 17 downregulated central genes were identified. Furthermore, the 17 downregulated central genes were validated via GEPIA and datasets from ArrayExpress, and 12 of them showed a significantly better prognosis. Finally, six genes were identified significantly enriched in neuroactive ligand-receptor interactions (EDNRB, RXFP1, P2RY1, CALCRL) and Rap1 signaling pathway (TEK, P2RY1, ANGPT1) via DAVID, which were further validated to be weakly expressed in LAC tissues via RNA quantification and immunohistochemistry analysis. Conclusions The low expression pattern and relation to prognosis indicated that the six genes were potential tumor suppressor genes in LAC. In conclusion, we identified six significantly downregulated DEGs as prognostic markers and potential tumor suppressor genes in LAC based on integrated bioinformatics methods, which could act as potential molecular markers and therapeutic targets for LAC patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Diwen Zhang ◽  
Zhigang Zhou ◽  
Ruixia Yang ◽  
Sujun Zhang ◽  
Bin Zhang ◽  
...  

Tristetraprolin (TTP), a well-known RNA-binding protein, primarily affects the expression of inflammation-related proteins by binding to the targeted AU-rich element in the 3’ untranslated region after transcription and subsequently mediates messenger RNA decay. Recent studies have focused on the role of TTP in tumors and their related microenvironments, most of which have referred to TTP as a potential tumor suppressor involved in regulating cell proliferation, apoptosis, and metastasis of various cancers, as well as tumor immunity, inflammation, and metabolism of the microenvironment. Elevated TTP expression levels could aid the diagnosis and treatment of different cancers, improving the prognosis of patients. The aim of this review is to describe the role of TTP as a potential safeguard against carcinoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chenghao Peng ◽  
Hanmin Chen ◽  
Youwei Li ◽  
Hang Yang ◽  
Peizhong Qin ◽  
...  

High levels of microvessel density (MVD) indicate poor prognosis in patients with malignant glioma. Leucine-rich repeats and immunoglobulin-like domains (LRIG) 3, a potential tumor suppressor, plays an important role in tumor progression and may serve as a biomarker in many human cancers. However, its role and underlying mechanism of action in glioma angiogenesis remain unclear. In the present study, we used loss- and gain-of-function assays to show that LRIG3 significantly suppressed glioma-induced angiogenesis, both in vitro and in vivo. Mechanistically, LRIG3 inhibited activation of the PI3K/AKT signaling pathway, downregulating vascular endothelial growth factor A (VEGFA) in glioma cells, thereby inhibiting angiogenesis. Notably, LRIG3 had a significant negative correlation with VEGFA expression in glioma tissues. Taken together, our results suggest that LRIG3 is a novel regulator of glioma angiogenesis and may be a promising option for developing anti-angiogenic therapy.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ya-Zeng Huang ◽  
Jun Zhang ◽  
Jian-Jian Shen ◽  
Ting-Xiao Zhao ◽  
You-Jia Xu

2021 ◽  
Vol 10 ◽  
Author(s):  
Duilia Brex ◽  
Cristina Barbagallo ◽  
Federica Mirabella ◽  
Angela Caponnetto ◽  
Rosalia Battaglia ◽  
...  

Long non-coding RNAs (lncRNAs) are the most heterogeneous class of non-protein-coding RNAs involved in a broad spectrum of molecular mechanisms controlling genome function, including the generation of complex networks of RNA-RNA competitive interactions. Accordingly, their dysregulation contributes to the onset of many tumors, including colorectal cancer (CRC). Through a combination of in silico approaches (statistical screening of expression datasets) and in vitro analyses (enforced expression, artificial inhibition, or activation of pathways), we identified LINC00483 as a potential tumor suppressor lncRNA in CRC. LINC00483 was downregulated in CRC biopsies and metastases and its decreased levels were associated with severe clinical features. Inhibition of the MAPK pathway and cell cycle arrest by starvation induced an upregulation of LINC00483, while the epithelial to mesenchymal transition activation by TGFβ-1 and IL-6 caused its down-modulation. Moreover, enforced expression of LINC00483 provoked a slowing down of cell migration rate without affecting cell proliferation. Since LINC00483 was predominantly cytoplasmic, we hypothesized a “miRNA sponge” role for it. Accordingly, we computationally reconstructed the LINC00483/miRNA/mRNA axes and evaluated the expression of mRNAs in different experimental conditions inducing LINC00483 alteration. By this approach, we identified a set of mRNAs sharing the miRNA response elements with LINC00483 and modulated in accordance with it. Moreover, we found that LINC00483 is potentially under negative control of transcription factor HNF4α. In conclusion, we propose that LINC00483 is a tumor suppressor in CRC that, through an RNA-RNA network, may control cell migration and participate in proliferation signaling.


Sign in / Sign up

Export Citation Format

Share Document