mass profile
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 25)

H-INDEX

28
(FIVE YEARS 5)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 20
Author(s):  
Otakar Makeš ◽  
Jaroslav Schwarz ◽  
Petr Vodička ◽  
Guenter Engling ◽  
Vladimír Ždímal

Two intensive measurement campaigns using a compact time-of-flight aerosol mass spectrometer were carried out at the suburban site in Prague (Czech Republic) in summer (2012) and winter (2013). The aim was to determine the aerosol sources of the NR-PM1 fraction by PMF analysis of organic (OA) and inorganic aerosol mass spectra. Firstly, an analysis of the OA mass spectra was performed. Hydrocarbon-like OA (HOA), biomass burning OA (BBOA), and two types of oxygenated OA (OOA1) and (OOA2) were identified in summer. In winter, HOA, BBOA, long-range oxygenated OA (LROOA), and local oxygenated OA (LOOA) were determined. The identified HOA and BBOA factors were then used as additional input for the subsequent ME-2 analysis of the combined organic and inorganic spectra. This analysis resulted in six factors in both seasons. All of the previously reported organic factors were reidentified and expanded with the inorganic part of the spectra in both seasons. Two predominantly inorganic factors ammonium sulphate (AMOS) and ammonium nitrate (AMON) were newly identified in both seasons. Despite very similar organic parts of the mass profiles, the daily cycles of HOA and LOOA differed significantly in winter. It appears that the addition of the inorganic part of the mass profile, in some cases, reduces the ability of the model to identify physically meaningful factors.


2021 ◽  
Vol 922 (2) ◽  
pp. 93
Author(s):  
Francois Hammer ◽  
Jianling Wang ◽  
Marcel S. Pawlowski ◽  
Yanbin Yang ◽  
Piercarlo Bonifacio ◽  
...  

Abstract Here we show that precise Gaia EDR3 proper motions have provided robust estimates of 3D velocities, angular momentum, and total energy for 40 Milky Way dwarfs. The results are statistically robust and are independent of the Milky Way mass profile. Dwarfs do not behave like long-lived satellites of the Milky Way because of their excessively large velocities, angular momenta, and total energies. Comparing them to other MW halo populations, we find that many are at first passage, ≤2 Gyr ago, i.e., more recent than the passage of Sagittarius, ∼4–5 Gyr ago. We suggest that this is in agreement with the stellar populations of all dwarfs, for which we find that a small fraction of young stars cannot be excluded. We also find that dwarf radial velocities contribute too little to their kinetic energy when compared to satellite systems with motions only regulated by gravity, and some other mechanism must be at work such as ram pressure. The latter may have preferentially reduced radial velocities when dwarf progenitors entered the halo until they lost their gas. It could also explain why most dwarfs lie near their pericenter. We also discover a novel large-scale structure perpendicular to the Milky Way disk, which is made by 20% of dwarfs orbiting or counter-orbiting with the Sagittarius dwarf.


2021 ◽  
Vol 2098 (1) ◽  
pp. 012001
Author(s):  
F Apryandi ◽  
I H Belfaqih ◽  
A Sulaksono

Abstract In this study, we discuss the corrections implies by the presence of the general uncertainty principle (GUP) on Newton’s law of gravity by virtue of Verlinde’s proposal. We argue here that GUP leads to twofold modification, namely on the equipartition theorem and the holographic relation (Bekenstein-Hawking formula). Hence, following Verlinde’s proposal, we obtain quantum corrections term to the Newtonian gravity. In addition, we also report the quantum corrected mass profile of the galaxy. We restricted our derivation to first order in the GUP’s free parameter and compared it analytically with the other relevant works.


Author(s):  
Anthony M Flores ◽  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
...  

Abstract We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts 1.05 < z < 1.71, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zel’dovich (SZ) effect surveys, and observed with both the XMM-Newton and Chandra satellites. For each cluster, a precise gas mass profile was extracted, from which the value of r500 could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, r < 0.3r500 and 0.3 < r/r500 < 1.0. For the outer bin, the combined measurement for all ten clusters, Z/Z⊙ = 0.21 ± 0.09, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form Z∝(1 + z)γ, we measure a slope $\gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.


2021 ◽  
Vol 501 (4) ◽  
pp. 5021-5028
Author(s):  
C S Kochanek

Abstract The two properties of the radial mass distribution of a gravitational lens that are well constrained by Einstein rings are the Einstein radius RE and ξ2 = REα″(RE)/(1 − κE), where α″(RE) and κE are the second derivative of the deflection profile and the convergence at RE, respectively. However, if there is a tight mathematical relationship between the radial mass profile and the angular structure, as is true of ellipsoids, an Einstein ring can appear to strongly distinguish radial mass distributions with the same ξ2. This problem is beautifully illustrated by the ellipsoidal models in Millon et al. When using Einstein rings to constrain the radial mass distribution, the angular structure of the models must contain all the degrees of freedom expected in nature (e.g. external shear, different ellipticities for the stars and the dark matter, modest deviations from elliptical structure, modest twists of the axes, modest ellipticity gradients, etc.) that work to decouple the radial and angular structures of the gravity. Models of Einstein rings with too few angular degrees of freedom will lead to strongly biased likelihood distinctions between radial mass distributions and very precise but inaccurate estimates of H0 based on gravitational lens time delays.


Author(s):  
C M O’Riordan ◽  
S J Warren ◽  
D J Mortlock

Abstract When modelling strong gravitational lenses, i.e., where there are multiple images of the same source, the most widely used parameterisation for the mass profile in the lens galaxy is the singular power-law model ρ(r)∝r−γ. This model may be insufficiently flexible for very accurate work, for example measuring the Hubble constant based on time delays between multiple images. Here we derive the lensing properties – deflection angle, shear, and magnification – of a more adaptable model where the projected mass surface density is parameterised as a continuous two-dimensional broken power-law (2DBPL). This elliptical 2DBPL model is characterised by power-law slopes t1, t2 either side of the break radius θB. The key to the 2DBPL model is the derivation of the lensing properties of the truncated power law (TPL) model, where the surface density is a power law out to the truncation radius θT and zero beyond. This TPL model is also useful by itself. We create mock observations of lensing by a TPL profile where the images form outside the truncation radius, so there is no mass in the annulus covered by the images. We then show that the slope of the profile interior to the images may be accurately recovered for lenses of moderate ellipticity. This demonstrates that the widely-held notion that lensing measures the slope of the mass profile in the annulus of the images, and is insensitive to the mass distribution at radii interior to the images, is incorrect.


2020 ◽  
Vol 643 ◽  
pp. A165 ◽  
Author(s):  
S. Birrer ◽  
A. J. Shajib ◽  
A. Galan ◽  
M. Millon ◽  
T. Treu ◽  
...  

The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H0 = 73.3−1.8+1.7 km s−1 Mpc−1, describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H0. We quantify any potential effect of the MST with a flexible family of mass models, which directly encodes it, and they are hence maximally degenerate with H0. Our calculation is based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated on mock lenses, which are generated from hydrodynamic simulations. We first applied the inference to the TDCOSMO sample of seven lenses, six of which are from H0LiCOW, and measured H0 = 74.5−6.1+5.6 km s−1 Mpc−1. Secondly, in order to further constrain the deflector mass density profiles, we added imaging and spectroscopy for a set of 33 strong gravitational lenses from the Sloan Lens ACS (SLACS) sample. For nine of the 33 SLAC lenses, we used resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical analysis of the TDCOSMO+SLACS sample, we measured H0 = 67.4−3.2+4.1 km s−1 Mpc−1. This measurement assumes that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without relying on the form of the mass density profile used by H0LiCOW, we achieve a ∼5% measurement of H0. While our new hierarchical analysis does not statistically invalidate the mass profile assumptions by H0LiCOW – and thus the H0 measurement relying on them – it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H0 derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data.


2020 ◽  
Vol 500 (1) ◽  
pp. 1279-1284
Author(s):  
Duncan A Forbes ◽  
Jonah S Gannon ◽  
Aaron J Romanowsky ◽  
Adebusola Alabi ◽  
Jean P Brodie ◽  
...  

ABSTRACT The ultra diffuse galaxy in the NGC 5846 group (NGC 5846_UDG1) was shown to have a large number of globular cluster (GC) candidates from deep imaging as part of the VEGAS survey. Recently, Müller et al. published a velocity dispersion, based on a dozen of its GCs. Within their quoted uncertainties, the resulting dynamical mass allowed for either a dark matter free or a dark-matter-dominated galaxy. Here, we present spectra from KCWI that reconfirms membership of the NGC 5846 group and reveals a stellar velocity dispersion for UDG1 of σGC = 17 ± 2 km s−1. Our dynamical mass, with a reduced uncertainty, indicates a very high contribution of dark matter within the effective radius. We also derive an enclosed mass from the locations and motions of the GCs using the tracer mass estimator, finding a similar mass inferred from our stellar velocity dispersion. We find no evidence that the galaxy is rotating and is thus likely pressure supported. The number of confirmed GCs, and the total number inferred for the system (∼45), suggests a total halo mass of ∼2 × 1011 M⊙. A cored mass profile is favoured when compared to our dynamical mass. Given its stellar mass of 1.1 × 108 M⊙, NGC 5846_UDG1 appears to be an ultra diffuse galaxy with a dwarf-like stellar mass and an overly massive halo.


2020 ◽  
Vol 639 ◽  
pp. A73 ◽  
Author(s):  
Fabio Castagna ◽  
Stefano Andreon

The thermal Sunyaev-Zeldovich (SZ) effect and the X-ray emission offer separate and highly complementary probes of the thermodynamics of the intracluster medium. We present JoXSZ, the first publicly available code designed to jointly fit SZ and X-ray data coming from various instruments to derive the thermodynamic profiles of galaxy clusters. JoXSZ follows a fully Bayesian forward-modelling approach, accounts for the SZ calibration uncertainty, and for the X-ray background level systematic. It improves upon most current and not publicly available analyses because it adopts the correct Poisson-Gauss expression for the joint likelihood, makes full use of the information contained in the observations, even in the case of missing values within the datasets, has a more inclusive error budget, and adopts a consistent temperature in the various parts of the code, allowing for differences between X-ray and SZ gas-mass weighted temperatures when required by the user. JoXSZ accounts for beam smearing and data analysis transfer function, accounts for the temperature and metallicity dependencies of the SZ and X-ray conversion factors, adopts flexible parametrisation for the thermodynamic profiles, and on user request, allows either adopting or relaxing the assumption of hydrostatic equilibrium (HE). When HE holds, JoXSZ uses a physical (positive) prior on the radial derivative of the enclosed mass and derives the mass profile and overdensity radii rΔ. For these reasons, JoXSZ goes beyond simple SZ and electron density fits. We illustrate the use of JoXSZ by combining Chandra and NIKA data of the high-redshift cluster CL J1226.9+3332. The code is written in Python, it is fully documented, and the users are free to customise their analysis in accordance with their needs and requirements. JoXSZ is publicly available on GitHub.


Particles ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 532-542 ◽  
Author(s):  
Artyom Astashenok ◽  
Sergey Odintsov

We present a brief review of general results about non-rotating neutron stars in simple R 2 gravity and its extension with a scalar axion field. Modified Einstein equations are presented for metrics in isotropical coordinates. The mass–radius relation, mass profile and dependence of mass from central density on various equations of state are given in comparison to general relativity.


Sign in / Sign up

Export Citation Format

Share Document