pressure fall
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1255
Author(s):  
An-Hsiang Wang ◽  
Chung-Chieh Wang ◽  
George Tai-Jen Chen

During 10–12 June 2012, heavy rainfall occurred three days in a row in southern and central Taiwan, with daily rainfall maxima exceeding 500 mm on each day. In the Mei-yu season (May–June) during 1993–2000, only two other rainfall events had a comparable amount and duration, but this case was the only one that occurred well before the arrival of the Mei-yu front. The synoptic conditions and their evolution leading to this unique event are thus important and are the foci of this study. Our analysis indicates that the 10–12 June 2012 event in Taiwan was caused by the strong and persistent west-southwesterly low-level jet (LLJ) that transported warm, moist, and unstable air from upstream and then impinged on the island. The LLJ developed due to the enhanced horizontal pressure (or height) gradient when the pressure at low-levels fell significantly (by ~8 hPa) in South China (north of the jet) during 8–10 June, but the subtropical high to the southeast maintained its strength. Further, through a diagnosis using the pressure tendency equation, it is found that both warm air advection and the dynamic effects (column divergence and transport of mass by vertical motion) contributed to the pressure fall in South China. The warm air advection occurred in the southern part of a large-scale confluent pattern in China, and the persistent west-southwesterly flow through deep layer (mainly above 800 hPa) in South China transported warmer and less dense air into the region from lower latitudes. On the other hand, South China was also located under the diffluent zone in the northeastern quadrant of the South Asian upper-level anticyclone, which strengthened during 5–10 June and provided divergence aloft, which exceeded the low-level convergence and upward transport of mass (at a fixed height) into the column by vertical motion on 9 June. As a result, the dynamic effects also contributed to the pressure fall, although secondary to the warm air advection. The destabilization process in South China during 8–10 June was also helpful to increase convective activity and upper-level divergence.


2021 ◽  
Author(s):  
Jun Wu ◽  
Iraj Ershaghi

Abstract Castillo1 suggested the use of the G-Function plot based on the work of Nolte2. It has been a standard practice in the fracturing community to estimate the fracture closing pressure from a tangent to the G*dp/dg plot. In this analysis technique, the assumption is that a fracture has already developed under the high-pressure fracturing fluid. Then when the pumping is relaxed, one can estimate the fracture closing pressure. In many California waterfloods, the issue of maximum allowable injection gradient has been debated. Various solutions have been proposed to calculate a safe injection gradient. One method that has been promoted is the application of the G-function plot. In this paper, we maintain that this application can be misleading using the prescribed cartesian G function plots. We present the results of an extensive research study for analyzing pressure fall-off data using the G-Plot function. We studied a reappraisal of the G function plot using waterflood conditions where no prior fractures had formed, and no fracture closing pressure was meaningful or applicable. We show from analysis of generated data, using both numerical reservoir modeling and analytical derivations for a radial flow system, that fall-off tests analyzed using the cartesian G function can generate false indications of fracture closing where in fact, the entire injection has been based on radial flow homogeneous injection systems. We also studied systems with a pre-existing fracture before injection. We show that if such a reservoir system is subjected to injection and fall-off tests, again, one may compute a false indication of the irrelevant fracture closure pressure. We discuss how the cartesian scale used for the G function plot can be misleading for the analysis of fall-off test data.


2020 ◽  
Author(s):  
Juan José Moreno Labella ◽  
Miguel Morales Furió ◽  
David Muñoz Martín ◽  
Andrés Márquez Fernández ◽  
Carlos Molpeceres Álvarez

In Blister-Actuated Laser-Induced Forward Transfer (BA-LIFT), a laser pulse generates a blister in an intermediate polyimide layer to push away the fluid. In this work, a Phase Field model has been proposed to study the transference mechanisms. Simulations and experimental shadowgraphy images for BA-LIFT of water-glycerol mixtures have been compared. The transference mechanism in BA-LIFT is ideally only mechanical and does not explain some secondary effects in the jet expansion that have already been described in other LIFT techniques and associated with the cavitation of a thermally generated vapor bubble.The numerical model can reproduce the expansion of the main jet. The addition of a second push at 9 μs delay allows reproducing the secondary effects. Four possible causes of the second push have been studied: absorption of the laser pulse in the fluid, thermal conduction through the polyimide layer, a mechanical rebound of the elastically deformed blister, or pressure fall due to fluid velocity. After the analysis, the first three explanations have been rejected, and a hypothesis is proposed: the velocity field generated by the blister produces a cavitation bubble in the interface between the polyimide layer and the fluid, whose effects would be the same than the cavitation of the vapor bubble in other LIFT techniques.


Author(s):  
А.S. Novoseltsev ◽  
A.V. Babkin

The paper presents research of the collapse of the elastic-plastic shell under external surface forces simulating explosive loading by mathematical simulation using numerical methods. The problem was solved in two-dimensional curved geometries as a non-stationary problem of continuum mechanics. We applied the Wilkins Lagrangian method. The instability of the shell was initiated by harmonic surface perturbations on the outer or inner surfaces. The characteristics of the explosive loading were also changed: the maximum pressure, pressure fall time constant, and the time of application of the explosive load. The size of instability was determined by the deviation of the disturbed surface or the boundary of the jet-forming layer from the cylindrical one. We have established the parameters of the shell and the impulse loading on the shell, which affect most strongly the growth of instability during collapse.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 926
Author(s):  
Fushou Xie ◽  
Siqi Xia ◽  
Erfeng Chen ◽  
Yanzhong Li ◽  
Hongwei Mao ◽  
...  

The hydrodynamic information of liquid oxygen in the conveying pipeline of cryogenic launch vehicles directly determines the reliability of the operation of the turbopump. A 0.09 MPa anomalous pressure fall phenomenon in the feeding system has been observed during the flight and run test of a cryogenic rocket with four parallel engines. In previous work, we set up a full-scale experimental system with liquid oxygen as media. The anomalous pressure fall was successfully reproduced. Experimental studies of this phenomenon suggest that the problem might be associated with vortices into the five-way spherical cavity structure. The objective of this study was to determine the three-dimensional instability flow by computational methods to identify and better understand the anomalous pressure fall phenomenon. A numerical model developed by the turbulent conservation equations was validated by experimental data. The generation and evolution of vortices into the five-way spherical cavity of feeding pipelines was captured. It was found that the root cause of the instability flow causing the unusual pressure fall is the formation of a spindle-like vortex into the five-way spherical cavity due to disturbance of the inlet liquid oxygen. The results showed that there is a mirror-symmetrical four-vortices structure in the absence of disturbance, in which the liquid oxygen pressure fall with the rise of the Reynolds number is in good agreement with the predicting values calculated by a set of traditional empirical correlations. In the case of the specific operating conditions, it is also consistent with the experimental results. When the disturbance occurs at the inlet of the spherical cavity, the mirror-symmetrical four-vortices structure gradually evolves into the mirror-symmetrical two-vortices structure. When the disturbance is further enhanced, the mirror-symmetrical two-vortices structure merge with each other to form a spindle-like vortex, which is similar to the Rankine vortex structure. The pressure fall on the corresponding side of the spindle-like vortex core reduces abnormally, and is about 0.07 MPa, which is consistent with the experimental data under certain disturbance conditions. Moreover, it was found that the spindle-like vortex is a stable eddy structure, and would continue to exist once it is formed, which could also not disappear with the removal of the disturbance.


2020 ◽  
Vol 184 ◽  
pp. 01027
Author(s):  
B Ch Nookaraju

Computational investigation of steady, two-dimensional heat transfer attributes for forced convective chaotic discharge in a vertical channel of cluster of heated rectangular sections is performed. The discharge is deemed to be periodic fully developed so that the issue is determined for two extending zone and explanation is developed to more number of sections. This structure reproduces the driven convective cooling of a cluster of engraved circuit panels confronted in computerize belongings. Two mathematical statements for k- ℇ model is used for modeling for the turbulence and the finite volume methodology is used. Computations are performed for Reynolds numbers ranging from 6000-12000, Prandtl number of 0.7 and various geometric parameters characterizing the problem. As Reynolds number steps up the Nusselt Number increases. Re-circulations undermine the local Nusselt number when matched with comparing variation from a identical plate. The velocity contours, temperature distributions, variation of turbulent kinetic energy and kinetic energy dissipation rates in a vertical channel is found. With the blocks in the cluster, pressure fall is higher in resemblance to plane duct.


Kardiologiia ◽  
2019 ◽  
Vol 59 (12) ◽  
pp. 44-51 ◽  
Author(s):  
V. I. Kapelko

Chronic heart failure (CHF) in most cases is due to a decrease in myocardial contractility. In particular, this results in a reduction in the maximum rate of the pressure development in the left ventricle. At the same time the maximal rate of pressure fall at relaxation is also reduced. This is not surprising, since both depend on Ca ++ myoplasmic concentration. But most of cardiac pathologies have been associated with the impairement of myocardial relaxation to a greater extent than the contraction. In the review a new view has been proposed according to which this phenomenon is attributable to restructuring of titin, the sarcomeric protein that connects the ends of myosin filaments with the sarcomeric board, lines Z. A spring-like molecule of titin shrinks at sarcomeric contraction and straightens in parallel with removing of Ca ++ from myofibrils. A reduction of its stiffness, facilitating the filling of the left ventricle, can reduce restoring force of titin and thereby slow relaxation. The survey provides information about the functions of the calcium transport system and titin in the normal heart and in CHF observed both in experimental models and in patients.


Author(s):  
Stefan F. J. Langer

Background: Hypothermia is well known to elevate the time constant (whatever model is used) of the isochoric left-ventricular pressure fall. Due to different critera in use, it remained unclear whether prolonged diastole in hypothermia is sufficient for complete relaxation. Detecting and quantifying incomplete relaxation may become a valuable tool to prevent diastolic heart failure in hypothermia.Methods: Left-ventricular pressure decays in isolated guinea pig and rat hearts are analysed by 4-parametric regression at different temperatures, at sinus rhythm and electrical stimulation. Residual contraction (F_RC) is introduced and quantified by extrapolating the model's pressure forecast to end-systole, subtracting the asymptote, and normalising.Resultts: Isochoric pressure decay fits the regression model at all temperatures and heart beat frequencies. Residual contraction is virtually absent at normothermia and remains very small (F_RC<3%) down to 31°C. Lower temperatures or pacing induces higher F_RC. Eventually, the pressure curve becomes considerably elevated and looses its concavity.Conclusions: Despite slower pressure fall, ventricular relaxation remains fairly complete at hypothermia; and depends on considerable autoregulation of the individual heart. It is concluded (not proved) that individual emergence of negative lusitropy may indicate imminent heart failure. Asymptotic pressure rises are interpreted at higher ventricular tonus, independent from velocity of relaxation. Gradual increasing time constants may be attributed to a general slowing of bioreactions as temperature falls. Remarkable curve shape changes may be caused by aftercontractions due to elevated Ca++ sensitivity at hypothermia and high Ca++ load by pacing.


Sign in / Sign up

Export Citation Format

Share Document