coronary endothelial cells
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 17)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Gaetano D'Amato ◽  
Ragini Phansalkar ◽  
Jeffrey A. Naftaly ◽  
Pamela E Coronado Rios ◽  
Dale O. Cowley ◽  
...  

Regenerating coronary blood vessels has the potential to ameliorate ischemic heart disease, yet there is currently no method of stimulating clinically effective cardiac angiogenesisis. Endocardial cells, a particularly plastic cell type during development, line the heart lumen and are natural coronary vessel progenitors. Their intrinsic angiogenic potential is lost in adults, but studying the endocardial-to-coronary developmental pathway could identify methods of re-instating this process in diseased hearts. Here, we use a combination of mouse genetics and scRNAseq of lineage-traced endothelial cells to identify novel regulators of endocardial angiogenesis and precisely assess the role of Cxcl12/Cxcr4 signaling. Time-specific lineage tracing demonstrated that endocardial cells differentiated earlier than previously thought, largely at mid-gestation. A new mouse line reporting the activity of Cxcr4 revealed that, despite widespread Cxcl12 and Cxcr4 expression, only a small subset of these coronary endothelial cells activated the receptor, which were mostly in arteries. In accordance with these two findings, Cxcr4 deletion in the endocardial lineage only affected artery formation and only when deleted before mid-gestation. Integrating scRNAseq data of coronary endothelial cells from the endocardial lineage at both mid- and late-gestation identified a transitioning population that was specific to the earlier timepoint that specifically expressed Bmp2. Recombinant Bmp2 stimulated endocardial angiogenesis in an in vitro explant assay and in neonatal mouse hearts upon myocardial infarction. Our data shed light on how understanding the molecular mechanisms underlying endocardial-to-coronary transitions can identify new potential therapeutic targets that could promote revascularization of the injured heart.


Author(s):  
Brian Raftrey ◽  
Ian M Williams ◽  
Pamela E Rios Coronado ◽  
Xiaochen Fan ◽  
Andrew H Chang ◽  
...  

Rationale: Coronary artery disease (CAD) is the leading cause of death worldwide, but there are currently no methods to stimulate artery growth or regeneration in diseased hearts. Studying how arteries are built during development could illuminate strategies for re-building these vessels during ischemic heart disease. We previously found that Dach1 deletion in mouse embryos resulted in small coronary arteries. However, it was not known whether Dach1 gain-of-function would be sufficient to increase arterial vessels and whether this could benefit injury responses. Objective: We investigated how Dach1 overexpression in endothelial cells affected transcription and artery differentiation, and how it influenced recovery from myocardial infarction (MI). Methods and Results: Dach1 was genetically overexpressed in coronary endothelial cells (ECs) in either developing or adult hearts using ApjCreER. This increased the length and number of arterial end branches expanded arteries during development, in both the heart and retina, by inducing capillary ECs to differentiate and contribute to growing arteries. Single-cell RNA sequencing (scRNAseq) of ECs undergoing Dach1-induced arterial specification indicated that it potentiated normal artery differentiation, rather than functioning as a master regulator of artery cell fate. ScRNAseq also showed that normal arterial differentiation is accompanied by repression of lipid metabolism genes, which were also repressed by Dach1. In adults, Dach1 overexpression did not cause a statistically significant change artery structure prior to injury, but increased the number of perfused arteries in the injury zone post-MI. Conclusions: Our data demonstrate that increasing Dach1 is a novel method for driving artery specification and extending arterial branches, which could be explored as a means of mitigating the effects of CAD.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


Circulation ◽  
2021 ◽  
Vol 143 (6) ◽  
pp. 581-582
Author(s):  
Yajing Wang ◽  
Xinliang Ma

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Junhua Huang ◽  
Shouzhen Wu ◽  
Sancheng Cao ◽  
Xieying Zhu ◽  
Shuwan Zhang

Inflammation of endothelial cells (ECs) plays an important role in the pathogenesis of coronary artery lesions (CALs) in Kawasaki disease (KD). Semaphorin 4D (Sema4D) is the first semaphorin shown to have immunoregulatory functions by interacting with its receptors—plexin Bs. Recently, Sema4D has been reported to exert a proinflammatory effect on the endothelium and to be involved in cardiovascular disease. However, the role of Sema4D in KD remains unknown. This study was aimed at revealing the change of soluble Sema4D (sSema4D) in the serum of patients with KD and the effect of the sSema4D-plexin axis on the production of proinflammatory cytokines from human coronary endothelial cells (HCAECs) stimulated with sera from KD patients. Our results showed that serum sSema4D levels were specifically elevated in KD patients, especially in those with CALs, and correlated positively with disease severity and serum concentrations of interleukin- (IL-) 1β, IL-6, and IL-8. The disintegrin and metalloproteinase domain 17- (AMAM17-) mediated Sema4D shedding from neutrophils contributed to the elevation of sSema4D in the serum of KD patients. Furthermore, we found that Sema4D induced IL-1β production of HCAECs via plexin B2, whereas it promoted IL-6 and IL-8 production via plexin B1. Moreover, the expression of both plexin B1 and plexin B2 was upregulated in HCAECs treated with KD sera, and silencing of the two plexin receptors suppressed the overexpression of IL-1β, IL-6, and IL-8 in KD serum-treated HCAECs. Thus, our findings indicated that sSema4D released from neutrophils participates in the pathogenesis of KD-CALs by promoting inflammatory cytokine production of ECs via both plexin B1 and plexin B2, and Sema4D may be a novel predictor for KD-CALs and a candidate therapeutic target for anti-inflammatory strategies of KD.


2020 ◽  
Vol 52 (9) ◽  
pp. 967-974
Author(s):  
Hui Zhang ◽  
Ningning Ji ◽  
Xinyan Gong ◽  
Shimao Ni ◽  
Yu Wang

Abstract Studies have shown that long non-coding RNAs (lncRNA) play critical roles in coronary atherosclerotic heart disease (CAD). However, the function of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in CAD is unclear. In this study, we aimed to investigate the functions of lncRNA NEAT1 in CAD. RT-PCR and western blot analysis were carried out to examine the expressions of related RNAs. Colony formation assay, cell proliferation assay, apoptosis assay, and dual-luciferase reporter assay were conducted to investigate the abilities of colony migration, cell proliferation, apoptosis, and targeting. The results showed that NEAT1 was up-regulated in CAD blood samples and in human coronary endothelial cells (HCAECs). Transfection of pcNEAT1 significantly inhibited the survival rate of HCAECs and induced apoptosis of HCAECs. MiR-140-3p was down-regulated in HCAECs. NEAT1 directly targeted miR-140-3p, and the expression of miR-140-3p was inversely correlated with the expression of NEAT1 in CAD patients. In addition, co-transfection of NEAT1 with miR-140-3p mimic reversed the effect of pcNEAT1 on cell viability and apoptosis. mitogen-activated protein kinase 1 (MAPK1) was proved to be a target gene of miR-140-3p, and the miR-140-3p mimic was shown to reduce the expression of MAPK1 in HCAECs. pcNEAT1 significantly increased the expression level of MAPK1, while shNEAT1 significantly reduced the expression level of MAPK1. Our results revealed that lncRNA NEAT1 increased cell viability and inhibited CAD cell apoptosis possibly by activating the miR-140-3p/MAPK1 pathway, and lncRNA NEAT1 might serve as a potential therapeutic target for CAD.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1257
Author(s):  
Rita Carmona ◽  
Sandra Díaz del Moral ◽  
Silvia Barrena ◽  
Ramón Muñoz-Chápuli

Different sources have been claimed for the embryonic origin of the coronary endothelium. Recently, the potential of circulating cells as progenitors of the cardiac endothelium has also been suggested. In a previous study we have shown that circulating progenitors are recruited by the embryonic endocardium and incorporated into the coronary vessels. These progenitors derive from a mesodermal lineage characterized by the expression of Gata4 under control of the enhancer G2. Herein, we aim to trace this specific lineage throughout postnatal stages. We have found that more than 50% of the adult cardiac endothelium derives from the G2-GATA4 lineage. This percentage increases from embryos to adults probably due to differential proliferation and postnatal recruitment of circulating endothelial progenitors. In fact, injection of fetal liver or placental cells in the blood stream of neonates leads to incorporation of G2-GATA4 lineage cells to the coronary endothelium. On the other hand, labeling of the hematopoietic lineage by the stage E7.5 also resulted in positive coronary endothelial cells from both, embryos and adults. Our results suggest that early hematopoietic progenitors recruited by the embryonic ventricular endocardium can become the predominant source of definitive endothelium during the vascularization of the heart.


Sign in / Sign up

Export Citation Format

Share Document