single point mutations
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 42)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Sharon Miller ◽  
Terence Lee ◽  
Adam Merritt ◽  
Todd Pryce ◽  
Avram Levy ◽  
...  

This paper reports the identification of single-point mutations in the N gene of SARS-CoV-2 associated with a gene target failure by the Cepheid Xpert commercial system. In order to determine the mutation(s) responsible for the N gene detection failures, the genomic products from the Cepheid Xpert system were sequenced and compared to whole genomes of SARS-CoV-2 from clinical cases.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Kavita A. Iyer ◽  
Yifan Hu ◽  
Thomas Klose ◽  
Takashi Murayama ◽  
Montserrat Samsó

Single-point mutations in ryanodine receptors (RYRs), large intracellular Ca2+ channels that play a critical role in EC coupling, are linked to debilitating and lethal disorders such as central core disease, malignant hyperthermia (for the skeletal isoform, RYR1), catecholaminergic polymorphic ventricular tachycardia, and ARVD2 (for the cardiac isoform, RYR2). Mutant RYRs result in elevated [Ca2+]cyto due to steady leak from the sarcoplasmic reticulum. To explore the nature of long-range allosteric mechanisms of malfunction, we determined the structure of two N-terminal domain mutants of RYR1, situated far away from the pore. Cryo-electron microscopy of the N-terminal subdomain A (NTDA) and subdomain C (NTDC) full-length mutants, RYR1 R163C (determined to 3.5 Å resolution), and RYR1 Y522S (determined to 4.0 Å resolution), respectively, reveal large-scale conformational changes in the cytoplasmic assembly under closed-state conditions (i.e., absence of activating Ca2+). The multidomain changes suggest that the mutations induce a preactivated state of the channel in R164C by altering the NTDA+/CD interface, and in Y522S by rearrangement of the α-helical bundle in NTDC. However, the extent of preactivation is considerably higher in Y522S as compared with R163C, which agrees with the increased severity of the Y522S mutation as established by various functional studies. The Y522S mutation represents loss of a spacer residue that is crucial for maintaining optimal orientation of α helices in NTDC, alteration of which has long-range effects felt as far away as ∼100 Å. Additionally, the structure of the Y522S mutant channel under open-state conditions also differs from RYR1 WT open channels. Our developing work with RYR mutants exhibits the diverse mechanisms by which these single-point mutations exert an effect on the channel’s function and highlight the complexity of the multidomain channel, as well as the need for targeted therapies.


2021 ◽  
Author(s):  
Murilo N Sanches ◽  
Kaitlin Knapp ◽  
Antonio Bento Oliveira Junior ◽  
Peter G Wolynes ◽  
Jose N Onuchic ◽  
...  

The amyloid-β (Aβ) monomer, an intrinsically disordered peptide, is produced by the cleavage of the amyloid precursor protein, leading to Aβ40 and Aβ42 as major products. These two isoforms generate pathological aggregates, whose accumulation correlates with Alzheimer's disease (AD). Experiments have shown that even though the natural abundance of Aβ42 is smaller than that for Aβ40, the Aβ42 is more aggregation-prone compared to Aβ40. Moreover, several single-point mutations are associated with early-onset forms of AD. This work analyzes coarse-grained AWSEM simulations of normal Aβ40 and Aβ42 monomers, along with six single-point mutations associated with early on set disease. We analyzed the simulations using the Energy Landscape Visualization Method (ELViM), a reaction coordinate-free approach suited to explore the frustrated energy landscapes of intrinsically disordered proteins. ELViM is shown to distinguish the monomer ensembles of variants that rapidly form fibers from those that do not form fibers as readily. It also delineates the amino-acid contacts characterizing each ensemble. The results shed light on the potential of ELViM to probe intrinsically disordered proteins.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Thanh Binh Nguyen ◽  
Yoochan Myung ◽  
Alex G C de Sá ◽  
Douglas E V Pires ◽  
David B Ascher

Abstract While protein–nucleic acid interactions are pivotal for many crucial biological processes, limited experimental data has made the development of computational approaches to characterise these interactions a challenge. Consequently, most approaches to understand the effects of missense mutations on protein-nucleic acid affinity have focused on single-point mutations and have presented a limited performance on independent data sets. To overcome this, we have curated the largest dataset of experimentally measured effects of mutations on nucleic acid binding affinity to date, encompassing 856 single-point mutations and 141 multiple-point mutations across 155 experimentally solved complexes. This was used in combination with an optimized version of our graph-based signatures to develop mmCSM-NA (http://biosig.unimelb.edu.au/mmcsm_na), the first scalable method capable of quantitatively and accurately predicting the effects of multiple-point mutations on nucleic acid binding affinities. mmCSM-NA obtained a Pearson's correlation of up to 0.67 (RMSE of 1.06 Kcal/mol) on single-point mutations under cross-validation, and up to 0.65 on independent non-redundant datasets of multiple-point mutations (RMSE of 1.12 kcal/mol), outperforming similar tools. mmCSM-NA is freely available as an easy-to-use web-server and API. We believe it will be an invaluable tool to shed light on the role of mutations affecting protein–nucleic acid interactions in diseases.


2021 ◽  
Vol 9 ◽  
pp. 1-14
Author(s):  
Edem K. Netsey ◽  
Dr. samuel Kakraba ◽  
Samuel M. Naandam ◽  
Aayire C. Yadem

Many diseases like cystic fibrosis and sickle cell anemia disease (SCD), among others, arise from single point mutations in the respective proteins. How a single point mutation might lead to a global devastating consequence on a protein remains an intellectual mystery. SCD is a genetic blood-related disorder resulting from mutations in the beta chain of the human hemoglobin protein (simply, β-globin), subsequently affecting the entire human body. Higher mortality and morbidity rates have been reported for patients with SCD, especially in sub-Saharan Africa. Clinical management of SCD often requires specialized interdisciplinary clinicians. SCD presents a major global burden, hence an improved understanding of how single point mutations in β-globin results in different phenotypes of SCD might offer insight into protein engineering, with potential therapeutic intervention in view. By use of mathematical modeling, we built a hierarchical (nested) graph-theoretic model for the β-globin. Subsequently, we quantified the network of interacting amino acid residues, representing them as molecular system of three distinct stages (levels) of interactions. Using our nested graph model, we studied the effect of virtual single point mutations in β-globin that results in varying phenotypes of SCD, visualized by unsupervised machine learning algorithm, the dendrogram.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1514
Author(s):  
Matteo Castelli ◽  
Andreina Baj ◽  
Elena Criscuolo ◽  
Roberto Ferrarese ◽  
Roberta A. Diotti ◽  
...  

SARS-CoV-2 spike is evolving to maximize transmissibility and evade the humoral response. The massive genomic sequencing of SARS-CoV-2 isolates has led to the identification of single-point mutations and deletions, often having the recurrence of hotspots, associated with advantageous phenotypes. We report the isolation and molecular characterization of a SARS-CoV-2 strain, belonging to a lineage (C.36) not previously associated with concerning traits, which shows decreased susceptibility to vaccine sera neutralization.


2021 ◽  
Author(s):  
Marisa L. Martino ◽  
Stephen N. Crooke ◽  
Marianne Manchester ◽  
M.G. Finn

Sign in / Sign up

Export Citation Format

Share Document