energy physics
Recently Published Documents


TOTAL DOCUMENTS

3098
(FIVE YEARS 354)

H-INDEX

53
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 678
Author(s):  
Patryk Chaber ◽  
Paweł D. Domański ◽  
Daniel Dąbrowski ◽  
Maciej Ławryńczuk ◽  
Robert Nebeluk ◽  
...  

The digital twins technology delivers a new degree of freedom into system implementation and maintenance practice. Using this approach, a technological system can be efficiently modeled and simulated. Furthermore, such a twin offline system can be efficiently used to investigate real system issues and improvement opportunities, e.g., improvement of the existing control system or development of a new one. This work describes the development of a control system using the digital twins methodology for a gas system delivering a specific mixture of gases to the time-of-flight (ToF) multipurpose detector (MPD) used during high-energy physics experiments in the Joint Institute for Nuclear Research (Dubna, Russia). The gas system digital twin was built using a test stand and further extended into target full-scale installation planned to be built in the near future. Therefore, conducted simulations are used to validate the existing system and to allow validation of the planned new system. Moreover, the gas system digital twin enables testing of new control opportunities, improving the operation of the target gas system.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jie Zhao ◽  
Yan-Ting Hu ◽  
Yu Lu ◽  
Hao Zhang ◽  
Li-Xiang Hu ◽  
...  

AbstractGeneration of energetic electron-positron pairs using multi-petawatt (PW) lasers has recently attracted increasing interest. However, some previous laser-driven positron beams have severe limitations in terms of energy spread, beam duration, density, and collimation. Here we propose a scheme for the generation of dense ultra-short quasi-monoenergetic positron bunches by colliding a twisted laser pulse with a Gaussian laser pulse. In this scheme, abundant γ-photons are first generated via nonlinear Compton scattering and positrons are subsequently generated during the head-on collision of γ-photons with the Gaussian laser pulse. Due to the unique structure of the twisted laser pulse, the positrons are confined by the radial electric fields and experience phase-locked-acceleration by the longitudinal electric field. Three-dimensional simulations demonstrate the generation of dense sub-femtosecond quasi-monoenergetic GeV positron bunches with tens of picocoulomb (pC) charge and extremely high brilliance above 1014 s−1 mm−2 mrad−2 eV−1, making them promising for applications in laboratory physics and high energy physics.


Author(s):  
Qasem Exirifard ◽  
Ebrahim Karimi

In this paper, we consider relativistic quantum field theory in the presence of an external electric potential in a general curved spacetime geometry. We utilize Fermi coordinates adapted to the time-like geodesic to describe the low-energy physics in the laboratory and calculate the leading correction due to the curvature of the spacetime geometry to the Schrödinger equation. We then compute the nonvanishing probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzschild black hole. The photon emitted from the excited state by spontaneous emission extracts energy from the black hole, increases the decay rate of the black hole and adds to the information paradox.


2022 ◽  
Vol 17 (01) ◽  
pp. C01022
Author(s):  
T. Croci ◽  
A. Morozzi ◽  
F. Moscatelli ◽  
V. Sola ◽  
G. Borghi ◽  
...  

Abstract In this work, the results of Technology-CAD (TCAD) device-level simulations of non-irradiated and irradiated Low-Gain Avalanche Diode (LGAD) detectors and their validation against experimental data will be presented. Thanks to the intrinsic multiplication of the charge within these silicon sensors, it is possible to improve the signal to noise ratio thus limiting its drastic reduction with fluence, as it happens instead for standard silicon detectors. Therefore, special attention has been devoted to the choice of the avalanche model, which allows the simulation findings to better fit with experimental data. Moreover, a radiation damage model (called “New University of Perugia TCAD model”) has been fully implemented within the simulation environment, to have a predictive insight into the electrical behavior and the charge collection properties of the LGAD detectors, up to the highest particle fluences expected in the future High Energy Physics (HEP) experiments. This numerical model allows to consider the comprehensive bulk and surface damage effects induced by radiation on silicon sensors. By coupling the “New University of Perugia TCAD model” with an analytical model that describes the mechanism of acceptor removal in the multiplication layer, it has been possible to reproduce experimental data with high accuracy, demonstrating the reliability of the simulation framework.


2022 ◽  
Vol 258 ◽  
pp. 09001
Author(s):  
Srinath Bulusu ◽  
Matteo Favoni ◽  
Andreas Ipp ◽  
David I. Müller ◽  
Daniel Schuh

The crucial role played by the underlying symmetries of high energy physics and lattice field theories calls for the implementation of such symmetries in the neural network architectures that are applied to the physical system under consideration. In these proceedings, we focus on the consequences of incorporating translational equivariance among the network properties, particularly in terms of performance and generalization. The benefits of equivariant networks are exemplified by studying a complex scalar field theory, on which various regression and classification tasks are examined. For a meaningful comparison, promising equivariant and non-equivariant architectures are identified by means of a systematic search. The results indicate that in most of the tasks our best equivariant architectures can perform and generalize significantly better than their non-equivariant counterparts, which applies not only to physical parameters beyond those represented in the training set, but also to different lattice sizes.


2022 ◽  
Vol 17 (01) ◽  
pp. C01001
Author(s):  
F. Ahmadov ◽  
G. Ahmadov ◽  
R. Akbarov ◽  
A. Aktag ◽  
E. Budak ◽  
...  

Abstract In the presented work, the parameters of a new MAPD-3NM-II photodiode with buried pixel structure manufactured in cooperation with Zecotek Company are investigated. The photon detection efficiency, gain, capacitance and gamma-ray detection performance of photodiodes are studied. The SPECTRIG MAPD is used to measure the parameters of the MAPD-3NM-II and scintillation detector based on it. The obtained results show that the newly developed MAPD-3NM-II photodiode outperforms its counterparts in most parameters and it can be successfully applied in space application, medicine, high-energy physics and security.


2022 ◽  
Vol 17 (01) ◽  
pp. C01048
Author(s):  
A. Morozzi ◽  
M. Hoffmann ◽  
R. Mulargia ◽  
S. Slesazeck ◽  
E. Robutti

Abstract This work aims to investigate the suitability of innovative negative capacitance (NC) devices to be used in High Energy Physics experiments detection systems, featuring self-amplified, segmented, high granularity detectors. Within this framework, MFM (Metal-Ferroelectric-Metal) and MFIM (Metal-Ferroelectric-Insulator-Metal) structures have been investigated within the Technology-CAD environment. The strength of this approach is to exploit the behavior of a simple capacitor to accurately ad-hoc customize the TCAD library aiming at realistically modeling the polarization properties of devices fabricated with ferroelectric materials. The comparison between simulations and measurements in terms of polarization as a function of the applied electric field for both MFM and MFIM devices has been used for modeling and methodologies validation purposes. The analyses and results obtained for MFIM capacitors can be straightforwardly extended to the study of NC-FETs. This work would support the use of the TCAD modeling approach as a predictive tool to optimize the design and the operation of the new generation NC-FET devices for the future High Energy Physics experiments in the HL-LHC scenario. The NC working principle will be employed for particle detection applications in order to exceed the limits imposed by current CMOS technology in terms of power consumption, signal detectability and switching speed.


2022 ◽  
Vol 137 (1) ◽  
Author(s):  
E. Richter-Was ◽  
Z. Was

AbstractMatching and comparing the measurements of past and future experiments call for consistency checks of electroweak (EW) calculations used for their interpretation. On the other hand, new calculation schemes of the field theory can be beneficial for precision, even if they may obscure comparisons with earlier results. Over the years, concepts of Improved Born, Effective Born, as well as of effective couplings, in particular of $$\sin ^2\theta _W^{{\textit{eff}}}$$ sin 2 θ W eff mixing angle for EW interactions, have evolved. In our discussion, we use four versions of EW library for phenomenology of practically all HEP accelerator experiments over the last 30 years. We rely on the codes published and archived with the Monte Carlo program for $$e^+e^- \rightarrow f {\bar{f}} n(\gamma )$$ e + e - → f f ¯ n ( γ ) and available for the as well. re-weighs generated events for introduction of EW effects. To this end, is first invoked, and its results are stored in data file and later used. Documentation of upgrade, to version 2.1.0, and that of its new arrangement for semi-automated benchmark plots are provided. In our paper, focus is placed on the numerical results, on the different approximations introduced in Improved Born to obtain Effective Born, which is simpler for applications of strong or QED processes in pp or $$e^+e^-$$ e + e - colliders. The $$\tau $$ τ lepton polarization $$P_{\tau }$$ P τ , forward–backward asymmetry $$A_{{\textit{FB}}}$$ A FB and parton-level total cross section $$\sigma ^{{\textit{tot}}}$$ σ tot are used to monitor the size of EW effects and effective $$\sin ^2\theta _W^{{\textit{eff}}}$$ sin 2 θ W eff picture limitations for precision physics. Collected results include: (i) Effective Born approximations and $$\sin ^2\theta _W^{{\textit{eff}}}$$ sin 2 θ W eff , (ii) differences between versions of EW libraries and (iii) parametric uncertainties due to, for example, $$m_t$$ m t or $$\Delta \alpha _h^{(5)}(s)$$ Δ α h ( 5 ) ( s ) . These results can be considered as benchmarks and also allow to evaluate the adequacy of Effective Born with respect to Improved Born. Definitions are addressed too.


Author(s):  
H. M. Gray

High-energy physics is facing a daunting computing challenge with the large datasets expected from the upcoming High-Luminosity Large Hadron Collider in the next decade and even more so at future colliders. A key challenge in the reconstruction of events of simulated data and collision data is the pattern recognition algorithms used to determine the trajectories of charged particles. The field of quantum computing shows promise for transformative capabilities and is going through a cycle of rapid development and hence might provide a solution to this challenge. This article reviews current studies of quantum computers for charged particle pattern recognition in high-energy physics. This article is part of the theme issue ‘Quantum technologies in particle physics’.


Sign in / Sign up

Export Citation Format

Share Document