wave emission
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 98)

H-INDEX

48
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Fugang Xi ◽  
He Yang ◽  
Vladislav Khayrudinov ◽  
Yuhang He ◽  
Tuomas Haggren ◽  
...  

Abstract The development of powerful terahertz (THz) emitters is the cornerstone for future THz applications, such as communication, medical biology, non-destructive inspection, and scientific research. Here, we report the THz emission properties and mechanisms of mushroom-shaped InAs nanowire (NW) network using linearly polarized laser excitation. By investigating the dependence of THz signal to the incidence pump light properties (e.g., incident angle, direction, fluence, and polarization angle), we conclude that the THz wave emission from the InAs NW network is induced by the combination of linear and nonlinear optical effects. The former is a transient photocurrent accelerated by the photo-Dember field, while the latter is related to the resonant optical rectification effect. Moreover, the p-polarized THz wave emission component is governed by the linear optical effect with a proportion of ~85% and the nonlinear optical effect of ~15%. In comparison, the s-polarized THz wave emission component is mainly decided by the nonlinear optical effect. The THz emission is speculated to be enhanced by the localized surface plasmon resonance absorption of the In droplets on top of the NWs. This work verifies the nonlinear optical mechanism in the THz generation of semiconductor NWs and provides an enlightening reference for the structural design of powerful and flexible THz surface and interface emitters in transmission geometry.


2021 ◽  
Vol 922 (1) ◽  
pp. 71
Author(s):  
R. Abbott ◽  
T. D. Abbott ◽  
S. Abraham ◽  
F. Acernese ◽  
K. Ackley ◽  
...  

Abstract We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537–6910 using data from the LIGO–Virgo Collaboration observing run O3. PSR J0537–6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86–97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode-driven spin-down in PSR J0537–6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation.


2021 ◽  
Vol 1 ◽  
pp. 17-26
Author(s):  
Reyhan Fahmirakhman Abdullah ◽  
Dharu Arseno ◽  
Fiky Yosef Suratman

In general, Radar or Radio Detection and Ranging is an electromagnetic wave system that is useful to measure distance and answer and make maps of surrounding objects. Radar has an advantage compared to other navigation tools, which is that radar does not require a transmitter station as a transmitter. Radar has an electronic wave emission principle that emits short radio wave pulses emitted in a narrow beam by a directional antenna. In this study, a multi-object radar detection simulation was carried out using Dopler processing both MTI and PDP, which later on the radar will detect related objects. Multi-object here is a condition that is achieved when a navigation radar detects more than one object. The result of this research is a multi-object detection process using the MTI and PDP methods and the matched-filter obtained from the predetermined data. So Doppler processing aims to mitigate the clutter signal to improve the detection performance of moving targets even though there is a dominance of signals originating from stationary clutter. 


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Lucas Tonetto ◽  
Andrea Sabatucci ◽  
Omar Benhar

Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 381
Author(s):  
Sourav Roy Chowdhury ◽  
Maxim Khlopov

Magnetars have already been a potential candidate as gravitational wave sources that could be detected by current and future terrestrial as well as ground-based gravitational wave detectors. In this article, we focus on the gravitational wave emission from the distorted rotating neutron stars. The deformation is assumed to be symmetric around an axis that is perpendicular to the rotation axis. The form is applied in the context of a neutron star whose magnetic field has been deformed on its own. By introducing the effects from all magnetars in the Universe, based on various proposed magnetic field configurations, such as poloidal and toroidal, the stochastic gravitational wave background can be generated. We choose to figure out exactly how the observations of the stochastic gravitational wave background should be used to understand much more about physics correlated with the magnetar behavior, based on the restriction on the ellipticity of the magnetar.


2021 ◽  
Author(s):  
Hsin-hui Huang ◽  
Saulius Juodkazis ◽  
Eugene Gamaly ◽  
Takeshi Nagashima ◽  
Tetsu Yonezawa ◽  
...  

Abstract Intense THz wave sources are highly expected for further progresses in nonlinear THz science and practical implementation of non-ionizing radiation in sensing and communications. Solid-based sources have inherent limits of material breakdown, while intense laser irradiation of liquids is a promising emerging technique for THz wave and hard X-ray emission. Water-based THz emission shows intensity enhancements up to 10 times when laser-pulse pairs with nanosecond delay are used. Here we show circularly-polarized THz wave emission from thin water flow irradiated by two time-separated and linearly-polarized femtosecond laser pulses. THz time-domain spectroscopy reveals the circularly-polarized THz emission dominates 4.7 ns after the first pulse irradiation. THz wave detection delay in the spectroscopy and time-resolved micrography indicate that the THz wave emission originates from the rarefied volume in front of the flow. Radial relaxation of charges in the focal volume where ponderomotive charge depletion occurred on the optical axis is the origin for the circular polarization (due to spiraling currents). Tight focusing of fs-laser pulses localized THz wave emission to the sub-wavelength (tens-of-micrometers) region.


Rare Metals ◽  
2021 ◽  
Author(s):  
Bo-Wen Zhang ◽  
Dan Fang ◽  
Xuan Fang ◽  
Hong-Bin Zhao ◽  
Deng-Kui Wang ◽  
...  

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Enrico Barausse ◽  
Emanuele Berti ◽  
Vitor Cardoso ◽  
Scott A. Hughes ◽  
Gaurav Khanna

Author(s):  
Harmen Henricus Hollestelle

This paper consists of two parts. In part I some new relations for a field theory with time intervals are derived. One concept of field theory evaluated is complementarity, another is field operators both defined within a time interval description. Part II includes specific results and commentary. Discussed are time interval dependent wave propagation surfaces for star source emission waves and derived is a metric propagation surface area requirement. The results allow to consider one same field that like gravitation within General Relativity applies to both non zero and zero mass. The associated field energy is space time dependent for non zero mass, and is related to a space time dependent metric tensor for zero mass wave particles. Defined is internal energy transfer where wave particle numbers increase linearly and mass and momentum diminish, decrease inversely with the distance from the wave emission source. The commentary are applications related to cosmological overall volume and temperature dependence.


2021 ◽  
Author(s):  
Takahiro Ushioku ◽  
Hiroaki Yoshimura

Abstract This paper numerically investigates unsteady behavior of cloud cavitation, in particular, to elucidate the induced shock wave emission. To do this, we consider a submerged water-jet injection into still water through a nozzle and make some numerical analysis of two-dimensional multiphase flows by Navier-Stokes equations. In our previous study [7], we have shown that twin vortices symmetrically appear in the injected water, which plays an essential role in performing the unsteady behavior of a cloud of bubbles. In this paper, we further illustrate the elementary process of the emission of the shock waves. First, we set up the mixture model of liquid and gas in Lagrangian description by the SPH method, together with the details on the treatment of boundary conditions. Second, we show the velocity fields of the multiphase flow to illustrate the inception, growth as well as the collapse of the cloud. In particular, we explain the mechanism of the collapse of the cloud in view of the motion of the twin vortices. Further, we investigate the pressure fields of the multiphase flow in order to demonstrate how the shock wave is emitted associated with the collapse of the cloud. Finally, we show that a small shock wave may be released prior to the main shock wave emission.


Sign in / Sign up

Export Citation Format

Share Document