fracture toughness specimen
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 214
Author(s):  
Pejo Konjatić ◽  
Marko Katinić ◽  
Dražan Kozak ◽  
Nenad Gubeljak

The objective of this work was to investigate the fracture behavior of a heterogeneous I-shaped welded joint in the context of yield load solutions. The weld was divided into two equal parts, using the metal with the higher yield strength and the metal with the lower yield strength compared to base metal. For both configurations of the I-shaped weld, one with a crack in strength in the over-matched part of the weld and one for a crack in the under-matched part of the weld, a systematic study of fracture toughness SE(B) specimen was carried out in which the crack length, the width of the weld and the strength mismatch factor for both weld metals were varied, and the yield loads were determined. As a result of the study, two mathematical models for determination of yield loads are proposed. Both models were experimentally tested with one strength mismatch configuration, and the results showed good agreement and sufficiently conservative results compared to the experimental results.


2020 ◽  
Vol 21 (4) ◽  
pp. 323-327
Author(s):  
L.I. Chyrko ◽  
◽  
V.M. Revka ◽  
Yu.V. Chaikovskyi ◽  
M.G. Goliak ◽  
...  

The comparison of experimental values of the critical brittle temperature ΔTF and reference temperature ΔT0 of VVER-1000 reactor vessel weld metal with an elevated content of manganese and nickel is performed. ΔTF and ΔT0 values are defined proceeding from the standard impact bend Charpy and Charpy cracked fracture toughness specimen tests, respectively. Specimens were irradiated in industrial reactors in the frame of surveillance specimen program up to the fast (E ≥ 0.5 MeV) neutron fluences corresponding to the NPP long term operation period. The research results showed the shifts ΔTF and ΔT0 to agree with each other. Besides, it was discovered that in the range of over-design fluences the design embrittlement model has a tendency to underestimate the critical brittle temperature shift.


Author(s):  
Mikhail A. Sokolov

Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs and most likely to be used in advanced reactors as per ASME code. The advantage of the Mini-CT specimen technique is that multiple specimens can be machined from one half of a broken Charpy specimen, used in a standard surveillance capsule of a reactor pressure vessel. Up to now, most of the work on validation of this type of the specimens has been performed on base metal. In this study, Mini-CT specimens were used to perform fracture toughness characterization of low upper-shelf Linde 80 weld, designated WF-70. This weld was utilized in the Midland beltline weld and has been previously well characterized at ORNL with various types and sizes of fracture toughness specimens. The Mini-CT specimens were machined from broken previously tested Charpy V-notch specimens. Despite very small size and relatively small number of Mini-CT specimen tested, the transition fracture toughness temperature, To, derived from these Mini-CT specimens is in very good correspondence with To reported from analysis of a large number of larger fracture toughness specimens.


Author(s):  
Marius Gintalas ◽  
Robert A. Ainsworth

The paper presents T-stress solutions developed to characterize constraint levels in large-scale cracked pipes and elbows. Stress intensity factor, KI, solutions for pipes and elbows are normalised by material fracture toughness to define the Kr parameter in fitness-for-service procedures, such as R6. Adding knowledge on levels of T-stress allows more advanced analysis through a normalised constraint parameter βT. The paper presents analyses for 6 pipes and 8 elbows. Values of the normalised constraint parameter βT are calculated for each pipe and elbow at the experimentally measured crack initiation point. Comparison of constraint levels in the pipes and elbows with those in various types of fracture toughness specimen are used to predict the initiation loads using the R6 method and to provide guidelines for transferability.


Author(s):  
Mikhail A. Sokolov ◽  
Randy K. Nanstad

Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. Small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. The PCVN specimen as well as any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of RPVs. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Precracking and testing of Charpy surveillance specimens would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. However, there is a growing number of indications that there might be a bias in the reference fracture toughness transition temperature, To values derived from PCVN and compact specimens. The present paper summarizes data from the series of experiments that use subsize specimens for evaluation of the transition fracture toughness of reactor pressure vessel (RPV) steels. Two types of compact specimens and three types of three-point bend specimens from five RPV materials were used in these subsize experiments. The current results showed that To determined from PCVN specimens with width (W) to thickness (B) ratio W/B = 1, on average, are lower than To determined from compact specimens with W/B = 2. At the same time, three-point bend specimens with W/B = 2 exhibited To values that were very similar to To values derived from compact specimens. Constraint corrections developed by Dodds et al. are applied to assess the bias.


2012 ◽  
Vol 706-709 ◽  
pp. 97-104
Author(s):  
Fumiyoshi Minami

This paper presents a new fracture assessment method, IST method developed as ISO 27306. The IST method implements an equivalent CTOD ratio,β, for the CTOD toughness correction for constraint loss in structural components. Usingβ, the standard fracture toughness specimen and structural components are linked at the same level of the Weibull stress. This paper extends the equivalent CTOD concept to weld components. Effects of the weld strength mismatch and residual stress onβare discussed. It is shown on the failure assessment diagram (FAD) that the CTOD toughness correction withβleads to accurate fracture assessments of weld panels, whereas the conventional procedure gives much conservative results.


Author(s):  
Simon Kamel ◽  
Tiyaporn Vanagosoom ◽  
Prakash Shanthenu ◽  
Catrin M. Davies ◽  
Kamran M. Nikbin

A novel fracture toughness specimen design is presented for investigating the effects of residual stress and crack tip constraint on fracture. The specimen design, denoted here as an SC(T) specimen, is a hybrid of a blunt-notched C(T) specimen and an SEN(T) specimen. The SC(T) specimen is mechanically pre-compressed on the C(T) load line to introduce a residual stress in the ligament ahead of a blunt notch. Following pre-compression, a crack is introduced into the tensile residual stress field. The SC(T) specimen can then be loaded either on the C(T) or SEN(T) load line to examine the effects of residual stress under high constraint or low constraint conditions respectively. Finite element analysis is performed to examine the sensitivity of the specimen dimensions on crack tip constraint and to demonstrate the introduction of residual stress into the specimen.


Sign in / Sign up

Export Citation Format

Share Document