activator inhibitor
Recently Published Documents


TOTAL DOCUMENTS

4838
(FIVE YEARS 307)

H-INDEX

126
(FIVE YEARS 6)

Author(s):  
Ida Agersnap ◽  
Peter H. Nissen ◽  
Anne-Mette Hvas

AbstractPlasminogen activator inhibitor type 1 (PAI-1) is a main inhibitor of fibrinolysis. The PAI-1 gene (SERPINE1) harbors genetic variants with the potential of modifying plasma levels of PAI-1. A delicate balance exists between the coagulation and fibrinolytic system, and changes in PAI-1 have been suggested to compromise establishment of a successful pregnancy. Therefore, this systematic review investigated the association between genetic variants and/or plasma levels of PAI-1 and placenta-mediated pregnancy complications. An extensive literature search was conducted in PubMed, Embase, and Web of Science on the 29th of April 2021. All studies underwent quality rating according to The Study Quality Assessment Tools checklist provided by National Heart, Lung and Blood Institute. A total of 71 studies were included, among which 60 studies investigated PAI-1 genotypes and 11 studies measured PAI-1 plasma levels. In 32 out of 59 studies, no association was found between the PAI-1 4G/5G polymorphism (rs1799768) and placenta-mediated pregnancy complications, which was stated as no significant difference in the genotype distribution comparing women with and without placenta-mediated pregnancy complications or no significantly increased odds of placenta-mediated pregnancy complications carrying the 4G/4G or 4G/5G genotype. Eight out of 11 studies reported significantly higher PAI-1 plasma levels in preeclamptic women than in women without preeclampsia. In conclusion, no clear evidence indicates that PAI-1 polymorphisms are associated with placenta-mediated pregnancy complications, and the possible association between high PAI-1 plasma levels and preeclampsia needs further investigations. Thus, investigation of PAI-1 genotypes and PAI-1 plasma levels does not currently seem to have a place in daily clinical practice managing placenta-mediated pregnancy complications.


2022 ◽  
Vol 23 (1) ◽  
pp. 478
Author(s):  
Kiyotaka Okada ◽  
Naoyuki Kawao ◽  
Daisho Nakai ◽  
Rei Wakabayashi ◽  
Yoshitaka Horiuchi ◽  
...  

Glucocorticoids delay fracture healing and induce osteoporosis. However, the mechanisms by which glucocorticoids delay bone repair have yet to be clarified. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. We herein investigated the roles of macrophages in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered with dexamethasone (Dex). Dex significantly decreased the number of F4/80-positive macrophages at the damaged site two days after femoral bone injury. It also attenuated bone injury-induced decreases in the number of hematopoietic stem cells in bone marrow in wild-type and PAI-1-deficient mice. PAI-1 deficiency significantly weakened Dex-induced decreases in macrophage number and macrophage colony-stimulating factor (M-CSF) mRNA levels at the damaged site two days after bone injury. It also significantly ameliorated the Dex-induced inhibition of macrophage phagocytosis at the damaged site. In conclusion, we herein demonstrated that Dex decreased the number of macrophages at the damaged site during early bone repair after femoral bone injury partly through PAI-1 and M-CSF in mice.


2021 ◽  
Author(s):  
Lingxia Qiao ◽  
Zhi-Bo Zhang ◽  
Wei Zhao ◽  
Ping Wei ◽  
Lei Zhang

Oscillatory behaviors, which are ubiquitous in transcriptional regulatory networks, are often subject to inevitable biological noise. Thus a natural question is how transcriptional regulatory networks can robustly achieve accurate oscillation in the presence of biological noise. Here, we search all two- and three-node transcriptional regulatory network topologies for those robustly capable of accurate oscillation against the parameter variability (extrinsic noise) or stochasticity of chemical reactions (intrinsic noise). We find that, no matter what source of the noise is applied, the topologies containing the repressilator with positive auto-regulation show higher robustness of accurate oscillation than those containing the activator-inhibitor oscillator, and additional positive auto-regulation enhances the robustness against noise. Nevertheless, the attenuation of different sources of noise is governed by distinct mechanisms: the parameter variability is buffered by the long period, while the stochasticity of chemical reactions is filtered by the high amplitude. Furthermore, we analyze the noise of a synthetic human nuclear factor κB (NF-κB) signaling network by varying three different topologies, and verify that the addition of a repressilator to the activator-inhibitor oscillator, which leads to the emergence of high-robustness motif—the repressilator with positive auto-regulation, improves the oscillation accuracy in comparison to the topology with only an activator-inhibitor oscillator. These design principles may be applicable to other oscillatory circuits.


2021 ◽  
Vol 11 (12) ◽  
pp. 1378
Author(s):  
Hee Young Cho ◽  
Han Sung Park ◽  
Eun Hee Ahn ◽  
Eun Ju Ko ◽  
Hyeon Woo Park ◽  
...  

Recurrent pregnancy loss (RPL) is defined as two or more consecutive pregnancy losses prior to 20 weeks of gestational age. Various factors, including immune dysfunction, endocrine disorders, coagulation abnormality, and genetic disorders influence RPL. In particular, plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and renin (REN) have important roles in the thrombotic and thrombolytic systems, and abnormal expression of these genes have a reported negative correlation with pregnancy maintenance. Moreover, some polymorphisms of the three genes are related to expression levels and thrombotic disorder. Therefore, we investigated whether polymorphisms of PAI-1, tPA, and REN are linked to RPL. Genotyping of the six polymorphisms (PAI-1 rs11178, rs1050955, tPA rs4646972, rs2020918, REN rs1464816, and rs5707) was performed using polymerase chain reaction (PCR)-restriction fragment length polymorphism and associations of the polymorphisms with RPL were evaluated by statistical analysis. The polymorphism PAI-1 rs1050955 GA+AA was associated with decreased RPL risk (AOR, 0.528; 95% CI 0.356–0.781; p = 0.001) as was the REN 10795 rs5707 GG genotype (AOR, 0.487; 95% CI 0.301–0.787; p = 0.003). In contrast, the tPA rs4646972 II genotype correlated with increased RPL risk (AOR, 1.606; 95% CI, 1.047–2.463; p = 0.030). This study provides evidence that tPA Alu rs4646972 may contribute to the risk of idiopathic RPL, but PAI-1 12068 rs1050955 and REN 10795 rs5707 are associated with a decreased risk of RPL. Therefore, these alleles may be useful as biomarkers to evaluate the risk of RPL.


2021 ◽  
Author(s):  
A.P. Vlasov ◽  
V.A. Trofimov ◽  
S.S. Al-Kubaysi ◽  
N.A. Myshkina ◽  
T.A. Muratova ◽  
...  

In order to determine the effectiveness of the use of remaxol based on a personalized approach in patients with acute pancreatitis, based on the establishment of gene polymorphism of integrin beta-3 (T1565C, ITGB3), integrin alpha-2 (C807T, ITGA2), fibrinogen (G(-455)A, FGB) and plasminogen activator inhibitor (5G(-675)4G, SERPINE1), a study of 84 patients with acute pancreatitis of varying severity was conducted. As a result of the study, it was proved that in order to increase the effectiveness of treatment of patients with severe acute pancreatitis upon admission, in addition to clinical, laboratory and instrumental studies, it is necessary to conduct genetic testing of the genotypes of the polymorphism of the GPIIa gene (T1565C), ITGA2 (C807T), FGB (G(-455)A) and SERPINE1 (5G(-675)4G) to develop a personalized approach in the treatment of this severe category of patients. Key words: acute pancreatitis, genotype, DNA diagnostics, genetic testing of genotypes, personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document