receptor action
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 24)

H-INDEX

53
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jan Kehr ◽  
Fu-Hua Wang ◽  
Fumio Ichinose ◽  
Shimako Yoshitake ◽  
Bence Farkas ◽  
...  

The negative and cognitive symptoms of schizophrenia and related disorders may be due to reduced dopaminergic tone in cortical brain areas. Alteration in the function of dopamine (DA) D3 receptors may play a role in this cortical hypofunctionality and underlie the deficits in social behaviors and cognitive functions in schizophrenia. Cariprazine is a potent DA D3-preferring D3/D2 receptor partial agonist that is approved for the treatment of schizophrenia and bipolar disorder. The objective of the study was to compare the abilities of cariprazine, aripiprazole (another DA receptor partial agonist with more D2 receptor preference), and ABT-925 (a selective DA D3 antagonist) to counteract the social deficit and neurochemical alterations induced by the D3 receptor-preferring agonist (+)-PD 128907 (PD) in rats. Administration of PD (0.16 mg/kg; s.c.) induced a marked (−72%) but short-lasting disruption of the defensive social aggregation behavior (huddling) in the first 10-min period. Cariprazine at all doses (0.1, 0.3, 1 mg/kg; p.o.) almost completely abolished the PD-induced disruption of huddling. Likewise, ABT-925 (3 mg/kg; p.o.) and to a lesser extent aripiprazole (20 mg/kg; p.o.) were effective in blocking the PD-induced disruption of huddling. As measured by microdialysis, the highest dose of cariprazine prevented a PD-induced decrease in DA levels (40–80 min post PD dose) in the medial prefrontal cortex (mPFC), whereas aripiprazole did not have a significant effect. ABT-925 significantly counteracted the effect of PD at 80 min post-dose. In the nucleus accumbens (nAcc) shell, the highest dose of cariprazine, as well as ABT-925 and aripiprazole, significantly reversed the PD-induced decrease in DA levels. Taken together, these data provide behavioral and in vivo neurochemical evidence for the preferential DA D3 receptor action of cariprazine in the rat. This property of cariprazine may offer therapeutic benefits against the cognitive deficits and negative/depressive symptoms of schizophrenia and related disorders.


2021 ◽  
Author(s):  
Shiying Sun ◽  
Xinping Zhong ◽  
Chunyu Wang ◽  
Hongmiao Sun ◽  
Shengli Wang ◽  
...  

2021 ◽  
Vol 22 (19) ◽  
pp. 10754
Author(s):  
Damian Jagleniec ◽  
Natalia Walczak ◽  
Łukasz Dobrzycki ◽  
Jan Romański

A 4-nitro-L-phenylalanine scaffold was used to construct effective ion pair receptors capable of binding anions in an enhanced manner with the assistance of alkali metal cations. A benzocrown ether was linked to a receptor platform via the amide function so as to support the squaramide function in anion binding and to allow all three NHs to act simultaneously. The binding properties of the receptors were determined using UV-vis, 1H NMR, 2D NMR, and DOSY spectroscopy in MeCN and in the solid state by X-ray measurements. Ion pair receptor 2 was found to interact with the most strongly with salts, and the removal of its key structural elements was shown to hinder the receptor action. The amide proton was recognized to switch from having involvement in an intramolecular hydrogen bond to interacting with anions upon complexation. Apart from carboxylates, which promote deprotonation, and other monovalent salts creating 1:1 complexes with the receptor, more complex equilibria were established upon the complexation of 2 with sulfates. Receptor 2 was shown to be capable of the extraction of ion pairs from the aqueous to organic phase and of the cation-enhanced transport chloride and sulfate anions across a bulk chloroform membrane. These features may open the door for its use in regulating ion concertation under interfacial conditions and acting as a potential drug to treat channelopathies.


2021 ◽  
Author(s):  
Samuel C Griffiths ◽  
Jia Tan ◽  
Armin Wagner ◽  
Levi L Blazer ◽  
Jarret J Adams ◽  
...  

The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, Brachydactyly B and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of receptor action. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr alter ROR2 function. Moreover, we demonstrated that the activity of the ROR2 CRD requires Frizzled receptors. Thus, ROR2 acts via its CRD to potentiate the function of a receptor supercomplex that includes Frizzleds to transduce WNT5A signals.


2021 ◽  
pp. clincanres.4135.2020
Author(s):  
Rachel Bleach ◽  
Stephen F. Madden ◽  
James Hawley ◽  
Sara Charmsaz ◽  
Cigdem Selli ◽  
...  

2020 ◽  
Vol 35 (1) ◽  
Author(s):  
Masaya Matsubayashi ◽  
Yoshihiko M. Sakaguchi ◽  
Yoshiki Sahara ◽  
Hitoki Nanaura ◽  
Sotaro Kikuchi ◽  
...  

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
B. D. M. Hatin

AbstractLearning about neural communication can be a dry and challenging undertaking, particularly for students without a background in biology. To enhance learning of this and other STEM material, there has been a call for science educators to embrace the use of active learning techniques. The aim of this Brief Communication is to encourage the use of embodied metaphors in the university classroom by sharing an active learning method for introducing students to a number of key concepts in neural communication. The students work in pairs or small groups, using foam projectiles such as Nerf guns to work through several metaphors for electrical and chemical processes including action potentials, neurotransmission and receptor action, excitatory and inhibitory post-synaptic potentials and neurotransmitter inactivation. The activities are easy to stage and lend themselves well to customisation based on available class size, classroom space, and resources. Student feedback showed that the activities improved self-reported impressions of understanding and ability to convey key concepts to others. The activities thus can serve as a useful method of student engagement and help develop understanding of complex material in a neuroscience classroom.


Sign in / Sign up

Export Citation Format

Share Document