layer control
Recently Published Documents


TOTAL DOCUMENTS

680
(FIVE YEARS 92)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 22 (24) ◽  
pp. 13401
Author(s):  
Koichi Ogami ◽  
Hiroshi I. Suzuki

The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.


Author(s):  
Thiago Martins ◽  
Mariana Sponchiado ◽  
Felipe Alves Correa Carvalho Silva ◽  
Eliab Estrada-Cortés ◽  
Peter J. Hansen ◽  
...  

In cattle, starting 4-5 days after estrus, pre-implantation embryonic development occurs in the confinement of the uterine lumen. Cells in the endometrial epithelial layer control the molecular traffic to and from the lumen and, thereby determine luminal composition. Starting early post-estrus, endometrial function is regulated by sex-steroids, but the effects of progesterone on luminal cells transcription have not been measured in vivo. First objective was to determine the extent to which progesterone controls transcription in luminal epithelial cells 4 d (D4) after estrus. Second objective was to discover luminal transcripts that predict pregnancy outcomes, when the effect of progesterone is controlled. Endometrial luminal epithelial cells were collected from embryo transfer recipients on D4 using a cytological brush and their transcriptome determined by RNASeq. Pregnancy by embryo transfer was measured on D30 (25 pregnant and 18 non-pregnant). Progesterone concentration on D4 was associated positively (n= 182) and negatively (n= 58) with gene expression. Progesterone-modulated transcription indicated an increase in oxidative phosphorylation, biosynthetic activity and proliferation of epithelial cells. When these effects of progesterone were controlled, different genes affected positively (n= 22) and negatively (n= 292) odds of pregnancy. These set of genes indicated that a receptive uterine environment was characterized by the inhibition of phosphoinositide signaling and innate immune system responses. A panel of 25 genes predicted the pregnancy outcome with sensitivity and specificity ranging from 64-96% and 44-83%, respectively. In conclusion, in the early diestrus, both progesterone-dependent and -independent mechanisms regulate luminal epithelial transcription associated with pregnancy outcomes in cattle.


2021 ◽  
Author(s):  
Martin Cornejo ◽  
Anurag Mohapatra ◽  
Soner Candas ◽  
Vedran S. Peric

This paper demonstrates a Power Hardware-in-the-Loop (PHIL) implementation of a decentralized optimal power flow (D-OPF) algorithm embedded into the operations of two microgrids connected by a tie line. To integrate the static behavior of the optimization model, a two layer control architecture is introduced. Underneath the dispatch commands from the D-OPF, a primary control scheme provides instantaneous reaction to the load dynamics. This setup is tested in the PHIL environment of the CoSES Lab in TU Munich. In the experiment, the two microgrids cooperatively optimize their operation through an ADMM based unbalanced D-OPF. The operations is then benchmarked against the exclusive use of primary control, without D-OPF. The decentralized approach outperforms, but also shows minor inefficiencies of integrating optimization methods into the real-time operation of the system.<br>


2021 ◽  
Author(s):  
Martin Cornejo ◽  
Anurag Mohapatra ◽  
Soner Candas ◽  
Vedran S. Peric

This paper demonstrates a Power Hardware-in-the-Loop (PHIL) implementation of a decentralized optimal power flow (D-OPF) algorithm embedded into the operations of two microgrids connected by a tie line. To integrate the static behavior of the optimization model, a two layer control architecture is introduced. Underneath the dispatch commands from the D-OPF, a primary control scheme provides instantaneous reaction to the load dynamics. This setup is tested in the PHIL environment of the CoSES Lab in TU Munich. In the experiment, the two microgrids cooperatively optimize their operation through an ADMM based unbalanced D-OPF. The operations is then benchmarked against the exclusive use of primary control, without D-OPF. The decentralized approach outperforms, but also shows minor inefficiencies of integrating optimization methods into the real-time operation of the system.<br>


2021 ◽  
pp. 108511
Author(s):  
Qian Mao ◽  
Lin Zhang ◽  
Fei Hu ◽  
Elizabeth Serena Bentley ◽  
Sunil Kumar

Author(s):  
Kai Lei ◽  
Junlin Huang ◽  
Xiaodong Li ◽  
Yu Li ◽  
Ye Zhang ◽  
...  

Author(s):  
Вячеслав Юрійович Усенко ◽  
Катерина Вікторівн Балалаєва ◽  
Михайло Михайлович Мітрахович

The development and improvement of turboprop engines are one of the important tasks of modern aircraft engine building. Propeller performance significantly affects the overall efficiency of turboprop engines. An important issue is to increase the trust of the propeller or propfan. In this matter, promising energy methods for increasing lift deserve special attention. Energy methods for increasing the lift force are based on the use of additional energy from the power plant to improve the flow around the blade and increase its bearing properties. The purpose of this work is to assess the influence of the boundary layer control on the blades of a coaxial propfan on the thrust. A coaxial propfan was chosen as the object of research. The rotor fan consists of two rows of blades, the first row has eight blades, the second - six. The peripheral diameter of the blades of the propfan is the same and amounts to 4.5 m. The cruise mode of operation was selected for the study. Modeling the flow in a coaxial propfan was based on the solution of the Navier-Stokes system of equations, which was closed by the SST Gamma Theta Transition model of turbulent viscosity. The computational grid consisted of 20 million cells, type-block, structured and unstructured with an adaptation of the boundary layer. In this study, an active boundary layer control method was chosen. The boundary layer was controlled only on the blades of the first row of the propfan. In the peripheral region of the blade, an additional mass of air was blown out through the slot, at a distance of 70 % of the profile chord. Blowing out a thin jet near the blade wall to increase the flow energy serves as an effective means of controlling the flow separation and increasing the bearing capacity of the propfan blade. Analysis of the simulation of the flow in a propfan with control of the boundary layer showed that the addition of energy to the boundary layer contributes to the filling of the velocity profile in the boundary layer, leads to a decrease in resistance and an increase in the thrust of the propfan. The results of the study showed that for the studied scheme of blowing out an additional mass of air on the propeller blades, it is possible to increase the thrust force up to 100 N. In the future, it is planned to investigate other schemes for controlling the boundary layer to increase the thrust of the coaxial propfan.


Sign in / Sign up

Export Citation Format

Share Document