collapse process
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 25)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 924 (1) ◽  
pp. 20
Author(s):  
Pritam Banerjee ◽  
Debojyoti Garain ◽  
Suvankar Paul ◽  
Rajibul Shaikh ◽  
Tapobrata Sarkar

Abstract Eddington-inspired Born–Infeld gravity is an important modification of Einstein’s general relativity, which can give rise to nonsingular cosmologies at the classical level, and avoid the end-stage singularity in a gravitational collapse process. In the Newtonian limit, this theory gives rise to a modified Poisson’s equation, as a consequence of which stellar observables acquire model dependent corrections, compared to the ones computed in the low energy limit of general relativity. This can in turn be used to establish astrophysical constraints on the theory. Here, we obtain such a constraint using observational data from cataclysmic variable binaries. In particular, we consider the tidal disruption limit of the secondary star by a white dwarf primary. The Roche lobe filling condition of this secondary star is used to compute stellar observables in the modified gravity theory in a numerical scheme. These are then contrasted with the values obtained by using available data on these objects, via a Monte Carlo error progression method. This way, we are able to constrain the theory within the 5σ confidence level.


Author(s):  
Sh. N. Mardonov

AbstractHere, we study the collapse process of quasi-two-dimensional Bose–Einstein condensate with symmetrized Dresselhaus spin–orbit coupling. We show that at a sufficiently strong spin–orbit coupling the arising spin-dependent velocity compensates the attraction between particles and can prevent the collapse of the condensate. As a result, spin–orbit coupling can lead to a stable condensate rather than the collapse process.


Author(s):  
Xinzheng Lu ◽  
Hong Guan ◽  
Hailin Sun ◽  
Yi Li ◽  
Zhe Zheng ◽  
...  

AbstractOn June 24, 2021, a 40-year-old reinforced concrete flat plate structure building in Miami suffered a sudden partial collapse. This study analyzed the overall performance and key components of the collapsed building based on the building design codes (ACI-318 and GB 50010). Punching shear and post-punching performances of typical slab-column joints are also studied through the refined finite element analysis. The collapse process was simulated and visualized using a physics engine. By way of these analyses, weak design points of the collapsed building are highlighted. The differences between the reinforcement detailing of the collapsed building and the requirements of the current Chinese code are discussed, together with a comparison of the punching shear and post-punching performances. The simulated collapse procedure and debris distribution are compared with the actual collapse scenes.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jingyu Zhang ◽  
Yanfei Li ◽  
Songzhi Yang ◽  
Hongming Xu ◽  
Shijin Shuai

Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 119961
Author(s):  
Hengjie Guo ◽  
Lorenzo Nocivelli ◽  
Roberto Torelli

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ehsan Dorrani

In the present work, we study spherically symmetric gravitational collapse of a homogeneous fluid in the framework of Rastall gravity. Considering a nonlinear equation of state (EoS) for the fluid profiles, we search for a class of nonsingular collapse solutions and the possibility of singularity removal. We find that depending on the model parameters, the collapse scenario halts at a minimum value of the scale factor at which a bounce occurs. The collapse process then enters an expanding phase in the postbounce regime, and consequently the formation of a spacetime singularity is prevented. We also find that, in comparison to the singular case where the apparent horizon forms to cover the singularity, the formation of apparent horizon can be delayed allowing thus the bounce to be causally connected to the external universe. The nonsingular solutions we obtain satisfy the weak energy condition (WEC) which is crucial for physical validity of the model.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Jin ◽  
Tie-Hang Wang ◽  
Zai-Kun Zhao ◽  
Liang Zhang ◽  
Yan-Zhou Hao

Collapsible loess is generally characterized by a sudden and substantial decrease in volume that occurs when is applied under constant stress. To evaluate the loess collapse potential, the self-weight collapse and collapse coefficients have been defined by the code for building construction in collapsible loess regions. However, the method in the code does not account for the vertical stress variation. The loess collapse process commonly occurs with stress variation in practice. This paper documents a low-cost, quantitative evaluation scheme using regression analysis to evaluate the loess collapse potential by varying the unloading levels. The results show that the factors that prominently account for loess collapse deformation are the initial pressure, unloading ratio, and collapse completed-ratio. At a constant collapse-completed ratio, the remnant collapse coefficient significantly decreases with the decreasing unloading ratio; at a constant unloading ratio, the remnant collapse coefficient increases with a decreasing collapse-completed ratio. Decreasing unloading and collapse-completed ratios decreased the loess collapse potential with an initial pressure that exceeds the threshold value. Finally, an unloading collapse deformation calculation of loess was prepared to analyze practical project problems of loess based on the unloading collapse test.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Inki Kim ◽  
Jungho Mun ◽  
Wooseup Hwang ◽  
Younghwan Yang ◽  
Junsuk Rho

Abstract The capillary force effect is one of the most important fabrication parameters that must be considered at the micro/nanoscale because it is strong enough to deform micro/nanostructures. However, the deformation of micro/nanostructures due to such capillary forces (e.g., stiction and collapse) has been regarded as an undesirable and uncontrollable obstacle to be avoided during fabrication. Here, we present a capillary-force-induced collapse lithography (CCL) technique, which exploits the capillary force to precisely control the collapse of micro/nanostructures. CCL uses electron-beam lithography, so nanopillars with various shapes can be fabricated by precisely controlling the capillary-force-dominant cohesion process and the nanopillar-geometry-dominant collapse process by adjusting the fabrication parameters such as the development time, electron dose, and shape of the nanopillars. CCL aims to achieve sub-10-nm plasmonic nanogap structures that promote extremely strong focusing of light. CCL is a simple and straightforward method to realize such nanogap structures that are needed for further research such as on plasmonic nanosensors.


2020 ◽  
Vol 9 (2) ◽  
pp. 357-364
Author(s):  
Hiroyuki K. M. Tanaka ◽  
Kenji Sumiya ◽  
László Oláh

Abstract. Bidirectional muographic measurements were conducted at the Imashirozuka burial mound, Japan. The mound was built in the beginning of the 6th century as a megalithic tomb and later collapsed after a landslide caused by the 1596 Fushimi earthquake, one of the largest earthquakes that has occurred in Japan over the last few centuries. The measurements were conducted in order to find evidence of this past disaster recorded in this historical heritage site. As a result, the vertical low-density regions were found at the top of the mound. These regions were interpreted as large-scale vertical cracks that caused the translational collapse process behind the rotational landslide that was already found in prior trench-survey-based works. These results indicate that there was an intrinsic problem with the stability of the basic foundation of the Imashirozuka mound before the 1596 Fushimi earthquake.


Sign in / Sign up

Export Citation Format

Share Document