cooling ability
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jonas Kristiansen Nøland ◽  
Christian Hartmann ◽  
Runar Mellerud

Hydrogen-powered airplanes have recently attracted a revitalized push in the aviation sector to combat CO2 emissions. However, to also reduce, or even eliminate, non-CO2 emissions and contrails, the combination of hydrogen with all-electric solutions is undoubtedly the best option to move toward the ambitious goal of climate-neutral aviation. Another important design choice is to store hydrogen cryogenically in its liquid form (LH2) to reduce space occupation compared to storage as compressed gas. However, the LH2 fuels cannot be utilized directly in fuel cells. It needs to be brought from liquid to a gas at about 350 K, where large amounts of heat must be added. Thus, a synergy can be made from this otherwise wasted cryogenic refrigeration power where superconducting machines (SCMs) and cold power electronics (CPE) are low-hanging fruits that could lead to radical space and weight reductions onboard the aircraft. These opportunities can be realized without having to pay the price, nor the volume occupation and mass needed for the cooling ability usually needed to achieve these extraordinary performances. In fact, this ground-breaking synergy makes cryogenic energy conversion relevant in a whole new way for aviation. The SCMs’ more than five times higher power densities than their conventional counterparts are exceptionally significant. This article introduces the recently proposed cryo-electric drivetrain initiatives and explores the opportunities of using direct hydrogen cooling as a potential heating solution to enhance the overall performance and scalability of zero-emission propulsion systems in future regional aircraft.


2021 ◽  
Author(s):  
Jonas Kristiansen Nøland ◽  
Christian Hartmann ◽  
Runar Mellerud

Hydrogen-powered airplanes have recently attracted a revitalized push in the aviation sector to combat CO2 emissions. However, to also reduce, or even eliminate, non-CO2 emissions and contrails, the combination of hydrogen with all-electric solutions is undoubtedly the best option to move toward the ambitious goal of climate-neutral aviation. Another important design choice is to store hydrogen cryogenically in its liquid form (LH2) to reduce space occupation compared to storage as compressed gas. However, the LH2 fuels cannot be utilized directly in fuel cells. It needs to be brought from liquid to a gas at about 350 K, where large amounts of heat must be added. Thus, a synergy can be made from this otherwise wasted cryogenic refrigeration power where superconducting machines (SCMs) and cold power electronics (CPE) are low-hanging fruits that could lead to radical space and weight reductions onboard the aircraft. These opportunities can be realized without having to pay the price, nor the volume occupation and mass needed for the cooling ability usually needed to achieve these extraordinary performances. In fact, this ground-breaking synergy makes cryogenic energy conversion relevant in a whole new way for aviation. The SCMs’ more than five times higher power densities than their conventional counterparts are exceptionally significant. This article introduces the recently proposed cryo-electric drivetrain initiatives and explores the opportunities of using direct hydrogen cooling as a potential heating solution to enhance the overall performance and scalability of zero-emission propulsion systems in future regional aircraft.


Author(s):  
Shibo Liu ◽  
Yongxin Qin ◽  
Bingchao Qin ◽  
Yu Xiao ◽  
Li-Dong Zhao

Science ◽  
2021 ◽  
pp. eabi5484
Author(s):  
Shaoning Zeng ◽  
Sijie Pian ◽  
Minyu Su ◽  
Zhuning Wang ◽  
Maoqi Wu ◽  
...  

Incorporating passive radiative cooling structures into personal thermal management technologies could effectively defend human against the intensifying global climate change. We show that large scale woven metafabrics can provide high emissivity (94.5%) in the atmospheric window and reflectivity (92.4%) in the solar spectrum because the hierarchical-morphology design of the randomly dispersed scatterers throughout the metafabric. Through scalable industrial textile manufacturing routes, our metafabrics exhibit excellent mechanical strength, waterproofness, and breathability for commercial clothing while maintaining efficient radiative cooling ability. Practical application tests demonstrated the human body covered by our metafabric could be cooled down ~4.8°C lower than that covered by commercial cotton fabric. The cost-effectiveness and high-performance of our metafabrics present great advantages for intelligent garments, smart textiles, and passive radiative cooling applications.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2986
Author(s):  
Ling Lin ◽  
Haiyan Mao ◽  
Ziyin Li ◽  
Wenyao Li ◽  
Chaoxia Wang

Optically active polymers are promising multifunctional materials with great application potentials. Herein, environmentally friendly optically active polyurethanes (OPUs) were obtained by introducing rotatory binaphthol monomer to polyurethane. The influence of binaphthol monomer content on the structure, mechanical properties, infrared emissivity, and thermal insulation of OPUs was studied intensively. Structure characterization indicated that the optically active polyurethanes have been successfully synthesized. The OPU synthesized with BIMOL and BDO at the mole ratio of 1:1 presented better thermal resistance. In addition, OPUs showed enhanced tensile strength and stretchability with the increase of BINOL content to a certain extent due to its rigid structural features and high molecular weight. The optically active polyurethanes showed lower infrared emissivity values (8–14 μm) than waterborne polyurethane (WPU), and the infrared emissivity decreased from 0.850 to 0.572 as the content of the BINOL monomer increased. Moreover, OPU4 exhibited the best heat insulation and cooling ability with about a 7 °C temperature difference. The thus-synthesized optically active polyurethanes provide an effective solution for developing highly effective thermal insulation materials.


2020 ◽  
Vol 220 ◽  
pp. 106390
Author(s):  
Lorenzo Segabinazzi ◽  
Igor Canisso ◽  
Marcio Teoro do Carmo ◽  
Sidnei Oliveira ◽  
Camila Freitas Dell’Aqua ◽  
...  

Nano Letters ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 6974-6980
Author(s):  
Rongkang Zhu ◽  
Dawei Hu ◽  
Zhi Chen ◽  
Xiaobao Xu ◽  
Yousheng Zou ◽  
...  

2020 ◽  
Vol 10 (10) ◽  
pp. 3603
Author(s):  
Matija Hribersek ◽  
Lucijano Berus ◽  
Franci Pusavec ◽  
Simon Klancnik

This paper explains liquefied nitrogen’s cooling ability on a nickel super alloy called Inconel 718. A set of experiments was performed where the Inconel 718 plate was cooled by a moving liquefied nitrogen nozzle with changing the input parameters. Based on the experimental data, the empirical model was designed by an adaptive neuro-fuzzy inference system (ANFIS) and optimized with the particle swarm optimization algorithm (PSO), with the aim to predict the cooling rate (temperature) of the used media. The research has shown that the velocity of the nozzle has a significant impact on its cooling ability, among other factors such as depth and distance. Conducted experimental results were used as a learning set for the ANFIS model’s construction and validated via k-fold cross-validation. Optimization of the ANFIS’s external input parameters was also performed with the particle swarm optimization algorithm. The best results achieved by the optimized ANFIS structure had test root mean squared error ( t e s t   R M S E ) = 0.2620 , and t e s t   R 2 = 0.8585 , proving the high modeling ability of the proposed method. The completed research contributes to knowledge of the field of defining liquefied nitrogen’s cooling ability, which has an impact on the surface characteristics of the machined parts.


Sign in / Sign up

Export Citation Format

Share Document