myeloid leukemia cell
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 73)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Federica Riccio ◽  
Elisa Micarelli ◽  
Riccardo Secci ◽  
Giulio Giuliani ◽  
Simone Vumbaca ◽  
...  

AbstractRepurposing of drugs for new therapeutic use has received considerable attention for its potential to limit time and cost of drug development. Here we present a new strategy to identify chemicals that are likely to promote a desired phenotype. We used data from the Connectivity Map (CMap) to produce a ranked list of drugs according to their potential to activate transcription factors that mediate myeloid differentiation of leukemic progenitor cells. To validate our strategy, we tested the in vitro differentiation potential of candidate compounds using the HL-60 human cell line as a myeloid differentiation model. Ten out of 22 compounds, which were ranked high in the inferred list, were confirmed to promote significant differentiation of HL-60. These compounds may be considered candidate for differentiation therapy. The method that we have developed is versatile and it can be adapted to different drug repurposing projects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sook-Kyoung Heo ◽  
Eui-Kyu Noh ◽  
Jeong Yi Kim ◽  
Yoo Kyung Jeong ◽  
Jae-Cheol Jo ◽  
...  

Haematologica ◽  
2021 ◽  
Author(s):  
Sean M. Post ◽  
Huaxian Ma ◽  
Prerna Malaney ◽  
Xiaorui Zhang ◽  
Marisa J.L. Aitken ◽  
...  

FMS-like Tyrosine Kinase 3 (FLT3) mutation is associated with poor survival in AML. The specific Anexelekto/MER Tyrosine Kinase (AXL) inhibitor ONO-7475 kills FLT3-mutant acute myeloid leukemia cells with targets including Extracellular-signal Regulated Kinase (ERK) and Myeloid Cell Leukemia 1 (MCL1). ERK and MCL1 are known resistance factors for Venetoclax (ABT-199), a popular drug for AML therapy, prompting the investigation of the efficacy of ONO-7475 in combination with ABT-199 in vitro and in vivo. ONO-7475 synergizes with ABT-199 to potently kill FLT3-mutant acute myeloid leukemia cell lines and primary cells. ONO-7475 is effective against ABT-199-resistant cells including cells that overexpress MCL1. Proteomic analyses revealed that ABT-199-resistant cells expressed elevated levels of pro-growth and anti-apoptotic proteins compared to parental cells, and that ONO-7475 reduced the expression of these proteins in both the parental and ABT-199-resistant cells. ONO-7475 treatment significantly extended survival as a single agent in vivo using acute myeloid leukemia cell lines and PDX models. Compared to ONO-7474 monotherapy, the combination of ONO- 7475/ABT-199 was even more potent in reducing leukemic burden and prolonging survival of mice in both model systems. These results suggest the ONO-7475/ABT-199 combination may be effective for acute myeloid leukemia therapy.


2021 ◽  
pp. 019262332110192
Author(s):  
Thomas Nolte ◽  
Wolfgang Baumgärtner ◽  
Florian Colbatzky ◽  
Anja Knippel ◽  
Heike Marxfeld ◽  
...  

The histopathology slide seminar “Classic Examples in Toxicologic Pathology XXVII” was held on February 21 and 22, 2020, at the Department of Pathology at the University of Veterinary Medicine in Hannover, Germany, with joint organization by the European Society of Toxicologic Pathology. The goal of this annual seminar is to present and discuss classical and actual cases of toxicologic pathology. This article summarizes the presentations given during the seminar, including images of representative lesions. Ten actual and classical cases of toxicologic pathology, mostly induced by a test article, were presented. These included small intestine pathology and transcriptomics induced by a γ-secretase modulator, liver findings in nonhuman primates induced by gene therapy, drug-induced neutropenia in dogs, device-induced growth plate lesions, polycystic lesions in CAR/PXR double knockout mice, inner ear lesions in transgenic mice, findings in Beagle dogs induced by an inhibitor of the myeloid leukemia cell differentiation protein MCL1, findings induced by a monovalent fibroblast growth factor receptor 1 antagonist, kidney lesions induced by a mammalian target of rapamycin inhibitor in combination therapy, and findings in mutation-specific drugs.


Sign in / Sign up

Export Citation Format

Share Document