mission objective
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 127
Author(s):  
Wamiq Raza ◽  
Anas Osman ◽  
Francesco Ferrini ◽  
Francesco De Natale

In recent years, the proliferation of unmanned aerial vehicles (UAVs) has increased dramatically. UAVs can accomplish complex or dangerous tasks in a reliable and cost-effective way but are still limited by power consumption problems, which pose serious constraints on the flight duration and completion of energy-demanding tasks. The possibility of providing UAVs with advanced decision-making capabilities in an energy-effective way would be extremely beneficial. In this paper, we propose a practical solution to this problem that exploits deep learning on the edge. The developed system integrates an OpenMV microcontroller into a DJI Tello Micro Aerial Vehicle (MAV). The microcontroller hosts a set of machine learning-enabled inference tools that cooperate to control the navigation of the drone and complete a given mission objective. The goal of this approach is to leverage the new opportunistic features of TinyML through OpenMV including offline inference, low latency, energy efficiency, and data security. The approach is successfully validated on a practical application consisting of the onboard detection of people wearing protection masks in a crowded environment.


Systems ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 69
Author(s):  
Christopher J. Peterson ◽  
Douglas L. Van Bossuyt ◽  
Ronald E. Giachetti ◽  
Giovanna Oriti

This article develops a method to model, analyze, and design military microgrids with the objective to improve their resilience in the face of disconnections from the larger electrical grid. Military microgrids provide power to installation and base facilities to enable base mission objective accomplishments that are related to national security. Previous research, tools, and methods for microgrid design and assessment do not adequately address resilience in terms of accomplishing mission objectives and instead primarily focus on economic outcomes. This article proposes a novel metric to quantify microgrid resilience in terms of its ability to minimize the impact of power disruption on missions supported by the microgrid. The metric is used in a novel design method to ensure an islanded military microgrid can continue operations while disconnected for a two-week duration. Our model examines the ability to continue mission operations subject to various microgrid disruptions as well as equipment reliability.


Author(s):  
B. Chemisky ◽  
E. Nocerino ◽  
F. Menna ◽  
M. M. Nawaf ◽  
P. Drap

Abstract. During underwater investigations, whatever the mission objective and the type of vehicle, obstacles detection and avoidance are essential tasks. They can either represent a target of interest that is the object of the mission or, on the contrary, represent obstacles that can hinder or affect the navigation of the vehicle. The underwater optical cameras that are usually fitted to underwater vehicles only offer a narrow field of view. The absorption of electromagnetic waves in the first few meters and the diffusion of light by the particles limit the use of these sensors to only a few meters range. The use of acoustic sensors, such as the forward looking sonar (FLS), is then necessary to enlarge the volume in which a target can be detected during the progression of the vehicle. Traditionally, sonars featured mechanical rotating parts, but lately bidirectional forward looking sonar, which directly produces a 2D image of the area, are becoming more and more common. Although these sonars can operate at frequency higher than 1MHz, their spatial resolution remains much lower if compared to current optical sensors and can be insufficient to identify and characterize a target. The combination of these two sensors in an operational scenario is essential to take advantage of each technology. In this paper we describe a low cost, multi-sensor, underwater survey solution for the identification, tracking, and 3D mapping of targets. After a description of the architecture of the opto-acoustics data acquisition and processing platform, we will focus on the calibration of the rigid transformation between the two sensors.


Author(s):  
Shane Lecompte ◽  
Annalisa Scacchioli

As humanity moves closer to forming realis-tic paths toward space exploration beyond that what we have already accomplished, multiple new chal-lenges have presented themselves. Traditional large spacecraft prove to be unfeasible both logistically and economically for missions where a single prob-lem can completely halt operations, especially given that higher reward missions are also of higher risk. A possible alternative to large craft is using a swarm of smaller craft made to accomplish the same goals while mitigating some of the drawbacks large craft face. Rockets, space shuttles, and satellites all prove to be too large to navigate areas of space dense with obstacles. Smaller craft on the scale of one meter in a large swarm would navigate these regions. Due to the decentralized nature of a swarm, any problems faced by one craft do not necessarily affect the oth-ers, allowing the swarm to stay operational despite some crafts becoming compromised. This feature means that a problem or miscalculation that could completely derail an entire mission in the context of a large spacecraft would not do the same to a swarm. In the context of exploring dense and/or extreme en-vironments in space, many logistic and economic problems faced by large craft due to their size and centralized nature will not affect a swarm. With an ac-curate mathematical model of the swarm dynamics from Benet et al.[1], a genetic algorithm’s metaheuristic method is utilized[2] to find optimal pa-rameters that yield a minimal fuel consumption value for a given trajectory/mission objective. From this approach, the total fuel consumption was cut in half while retaining desirable characteristics of the trajec-tory such as collision avoidance and final formation constraints, giving us a similar course that accom-plishes the same goal of transporting craft around objects and disturbances while also minimizing eco-nomic losses.


2021 ◽  
Vol 71 (1) ◽  
pp. 102-107
Author(s):  
M.V.K.S. Prasad ◽  
Patri Sreehari Rao ◽  
Jagannath Nayak

Interceptor missiles are designed to destroy enemy targets in air. Targets can be destroyed either in atmosphere or out of atmosphere. So for Air Defence scenario, a two layer protection system is required with one taking care of exo atmosphere and another endo atmosphere. In this Air Defence scenario, irrespective of target trajectory interceptor should neutralise it. So the control, guidance are to be designed and validated thoroughly with various scenarios of interceptor and target. These interceptors sense the rates from rate gyroscopes and accelerations from accelerometers which are fitted on board the interceptor. The navigation algorithm calculates the interceptor’s position and velocity from these rates and accelerations from time to time. Using these interceptor data and target information received from ground RADAR or on board seeker, guidance calculates accelerations demand and subsequently rate demand. The control algorithm runs in on board mission computer along with guidance. The control algorithm calculates the commanded rate and eventually commanded deflections to the control fins to move towards the target. The fins have to move as per commanded deflections to meet the mission objective of hitting the target. But the load known as aeroload which comes on the control fins during mission, causes control fins not to move as per command. Due to the difference between control command and physical movement of fin, the expected path towards target deviates. This increases the miss distance and also misses the target hit. This aeroload scenario is to be simulated on ground and some feature is to be designed to take care of it during mission. By studying the control system behaviour due to load, the control autopilot is to be automatically tuned to compensate for the loss in commanded deflections. This scenario can be carried out in Hardware-in-Loop simulation (HILS) setup. Mission load conditions can be applied on hardware actuation system in HILS setup and mission performance can be seen and also with different loads and different autopilot tunings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Veneranda ◽  
Guillermo Lopez-Reyes ◽  
Jesus Saiz ◽  
Jose Antonio Manrique-Martinez ◽  
Aurelio Sanz-Arranz ◽  
...  

AbstractIn this work, the analytical research performed by the Raman Laser Spectrometer (RLS) team during the ExoFiT trial is presented. During this test, an emulator of the Rosalind Franklin rover was remotely operated at the Atacama Desert in a Mars-like sequence of scientific operations that ended with the collection and the analysis of two drilled cores. The in-situ Raman characterization of the samples was performed through a portable technology demonstrator of RLS (RAD1 system). The results were later complemented in the laboratory using a bench top RLS operation simulator and a X-Ray diffractometer (XRD). By simulating the operational and analytical constraints of the ExoMars mission, the two RLS representative instruments effectively disclosed the mineralogical composition of the drilled cores (k-feldspar, plagioclase, quartz, muscovite and rutile as main components), reaching the detection of minor phases (e.g., additional phyllosilicate and calcite) whose concentration was below the detection limit of XRD. Furthermore, Raman systems detected many organic functional groups (–C≡N, –NH2 and C–(NO2)), suggesting the presence of nitrogen-fixing microorganisms in the samples. The Raman detection of organic material in the subsurface of a Martian analogue site presenting representative environmental conditions (high UV radiation, extreme aridity), supports the idea that the RLS could play a key role in the fulfilment of the ExoMars main mission objective: to search for signs of life on Mars.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
P. Rodriguez-Fernandez ◽  
N. T. Howard ◽  
M. J. Greenwald ◽  
A. J. Creely ◽  
J. W. Hughes ◽  
...  

SPARC is designed to be a high-field, medium-size tokamak aimed at achieving net energy gain with ion cyclotron range-of-frequencies (ICRF) as its primary auxiliary heating mechanism. Empirical predictions with conservative physics indicate that SPARC baseline plasmas would reach $Q\approx 11$ , which is well above its mission objective of $Q>2$ . To build confidence that SPARC will be successful, physics-based integrated modelling has also been performed. The TRANSP code coupled with the theory-based trapped gyro-Landau fluid (TGLF) turbulence model and EPED predictions for pedestal stability find that $Q\approx 9$ is attainable in standard H-mode operation and confirms $Q > 2$ operation is feasible even with adverse assumptions. In this analysis, ion cyclotron waves are simulated with the full wave TORIC code and alpha heating is modelled with the Monte–Carlo fast ion NUBEAM module. Detailed analysis of expected turbulence regimes with linear and nonlinear CGYRO simulations is also presented, demonstrating that profile predictions with the TGLF reduced model are in reasonable agreement.


2019 ◽  
Vol 105 (6) ◽  
pp. 447-455
Author(s):  
Thierry Philip ◽  
Sakari Karjalainen ◽  
Francesco De Lorenzo ◽  
Kathi Apostolidis ◽  
Claudio Lombardo ◽  
...  

The European cancer burden is growing rapidly, with an estimated 2 million deaths a year according to the latest research. As almost half of cancers are diagnosed after the age of 65, and considering the aging European population, a tidal wave of cancer cases will sweep across Europe within the coming decades. Without major action, the additional number of annual cancer cases is expected to rise from 4.2 million to 5.2 million by 2040. If we are to reach plateauing numbers by 2040 (as a minimum goal), this would require 0.75% annual reduction in risk and 1% reduction in risk of death. These challenges call for attack from various angles, coordinated efforts, rational strategies, initiatives throughout the cancer trajectory, activities to reduce inequities, and implementation of evidence-based measures. In order to defeat the societal challenges of cancer through innovation, Europe will need to join forces and connect the European Commission and the member states, politicians and citizens, industries and patient associations. A cancer mission should thus unite the public and patient viewpoint to the perspective of cancer professionals. The authors describe a plan that has been agreed upon among some of the major European Cancer organizations and associations. This plan uses a cancer mission as a tool and must deliver robust medical evidence to patients and doctors through high-quality research delivering sustainable and affordable strategies for prevention, treatment, and follow-up.


AI Magazine ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 3-16 ◽  
Author(s):  
Robert Morris ◽  
Anjan Chakrabarty

Aircraft design is an iterative process of creating a design concept from a set of requirements. Conceptual design is an early phase in the process, during which preliminary decisions and trade studies are made from a set of requirements related to mission objective and costs. Although much attention has been paid to applying autonomy technologies to robotic systems, including air vehicles, there has been little attention paid to incorporating autonomy as part of the conceptual design process. Consequently, designing for autonomy tends to be retrofitted to a vehicle that has already gone through a complete design process rather than as part of the initial process. This derivative approach to designing autonomous systems is suboptimal, and there is evidence that this has hindered the acceptance of autonomy technologies. This article proposes an approach to conceptual design for aircraft that incorporates autonomy into the conceptual design process. To illustrate the principles introduced, we consider the example of configuring an autonomous small unmanned aerial vehicle for searching and tracking a target of interest.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Austin Weber

The Canopy Near Infrared Observing Project (CaNOP) consists of a 3U CubeSat nanosatellite funded through WSGC. Its mission objective is to capture multispectral images across global forests, similar to that of the Landsat missions. In order to ensure the mission’s success, battery power must be managed efficiently. With newly working code for components in the “header stack”, operating and power tests were conducted and results were recorded. These results were fairly consistent with power and current data given within component manuals. This data will be critical in the next stages of testing, where battery life will be limited and actions will need to be taken to ensure the CubeSat does not drain its battery in space.


Sign in / Sign up

Export Citation Format

Share Document