constant load exercise
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 17 (2) ◽  
pp. 245-265
Author(s):  
Alif Nazrin Jumat ◽  
Ahmad Safwanudin Nordin ◽  
Iqbal Khan Norhamazi ◽  
Sharifah Maimunah Mud Puad ◽  
Adam Linoby

2021 ◽  
Vol 9 (18) ◽  
Author(s):  
Ian R. Villanueva ◽  
John C. Campbell ◽  
Serena M. Medina ◽  
Theresa M. Jorgensen ◽  
Shannon L. Wilson ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Liam P. Kelly ◽  
Fabien Andre Basset ◽  
Jason McCarthy ◽  
Michelle Ploughman

ObjectiveTo evaluate the safety and feasibility of performing treadmill aerobic exercise in moderate normobaric hypoxia among chronic hemiparetic stroke survivors.DesignObservational study using convenience sampling.SettingResearch laboratory in a tertiary rehabilitation hospital.ParticipantsChronic hemiparetic stroke survivors who could walk at least 10-m with or without assistance and had no absolute contraindications to exercise testing.InterventionParticipants (three male and four female) were asked to complete three normobaric hypoxia exposure protocols within a single session. First, they were passively exposed to normobaric hypoxia through gradual reductions in the fraction of inspired oxygen (FIO2 = 20.9, 17.0, and 15.0%) while seated (5-min at each level of FIO2). Participants were then exposed to the same reductions in FIO2 during constant-load exercise performed on a treadmill at 40% of heart rate reserve. Finally, participants completed 20-min of exercise while intermittently exposed to moderate normobaric hypoxia (5 × 2-min at FIO2 = 15.0%) interspaced with 2-min normoxia intervals (FIO2 = 20.9%).Outcome MeasuresThe primary outcome was occurrence of adverse events, which included standardized criteria for terminating exercise testing, blood oxygen saturation (SpO2) <80%, or acute mountain sickness score >2. The increased cardiovascular strain imposed by normobaric hypoxia exposure at rest and during exercise was evaluated by changes in SpO2, heart rate (HR), blood pressure, and rating of perceived exertion (RPE).ResultsOne participant reported mild symptoms of nausea during exercise in normobaric hypoxia and discontinued participation. No other adverse events were recorded. Intermittent normobaric hypoxia exposure was associated with reduced SpO2 (MD = −7.4%, CI: −9.8 to −5.0) and increased HR (MD = 8.2, CI: 4.6 to 11.7) compared to intervals while breathing typical room air throughout the 20-min constant-load exercise period. The increase in HR was associated with a 10% increase in relative effort. However, reducing FIO2 had little effect on blood pressure and RPE measurements.ConclusionModerate normobaric hypoxia appeared to be a safe and feasible method to increase the cardiovascular strain of submaximal exercise in chronic hemiparetic stroke survivors. Future studies evaluating the effects of pairing normobaric hypoxia exposure with existing therapies on secondary prevention and functional recovery are warranted.


2021 ◽  
Vol 288 ◽  
pp. 103643
Author(s):  
G. Kaltsakas ◽  
N. Chynkiamis ◽  
N. Anastasopoulos ◽  
P. Zeliou ◽  
V. Karapatoucha ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Tyler Falor ◽  
Britton Scheuermann ◽  
Andrew Misko ◽  
Jordan Monnier ◽  
Barry Scheuermann

Author(s):  
Alessandro Piras ◽  
Lorenzo Zini ◽  
Aurelio Trofè ◽  
Francesco Campa ◽  
Milena Raffi

Microcurrent electrical neuromuscular stimulation (MENS) is believed to alter blood flow, increasing cutaneous blood perfusion, with vasodilation and hyperemia. According to these physiological mechanisms, we investigated the short-term effects of MENS on constant-load exercise and the subsequent recovery process. Ten healthy subjects performed, on separate days, constant-load cycling, which was preceded and followed by active or inactive stimulation to the right quadricep. Blood lactate, pulmonary oxygen, and muscle deoxyhemoglobin on-transition kinetics were recorded. Hemodynamic parameters, heart rate variability, and baroreflex sensitivity were collected and used as a tool to investigate the recovery process. Microcurrent stimulation caused a faster deoxyhemoglobin (4.43 ± 0.5 vs. 5.80 ± 0.5 s) and a slower VO2 (25.19 ± 2.1 vs. 21.94 ± 1.3 s) on-kinetics during cycling, with higher lactate levels immediately after treatments executed before exercise (1.55 ± 0.1 vs. 1.40 ± 0.1 mmol/L) and after exercise (2.15 ± 0.1 vs. 1.79 ± 0.1 mmol/L). In conclusion, MENS applied before exercise produced an increase in oxygen extraction at muscle microvasculature. In contrast, MENS applied after exercise improved recovery, with the sympathovagal balance shifted toward a state of parasympathetic predominance. MENS also caused higher lactate values, which may be due to the magnitude of the muscular stress by both manual treatment and electrical stimulation than control condition in which the muscle received only a manual treatment.


2021 ◽  
pp. 9-12

Aim: Exercise has great influence on increasing metabolic system functions. The work load corresponded to anaerobic threshold provide optimal aerobic strain for metabolic activity in exercising muscle. In the present study we intended to evaluate body substrate oxidation ratio during constant load exercise test at the intensity of anaerobic threshold in healthy young male subjects. Material and Method: Total of 15 male performed an incremental ramp exercise test to estimate anaerobic threshold. Standard V-slope method used to estimate anaerobic threshold. Then each subject performed a constant load exercise test for a 30 min period with a work load corresponded to their anaerobic threshold. Respiratory quotient (RQ) used to evaluate substrate oxidations during exercise. Anova test used to evaluate significance of data obtained every 5 minutes of constant load exercise. Results: The subjects’ anaerobic threshold occurred at approximately 63% of their maximal exercise capacity. RQ varied markedly among the subjects but as a mean value, but it systematically decreased with increasing exercise time. Body mass index and exercise time has great importance on fat and carbohydrate oxidation ratio. Conclusion: Exercise intensity at the anaerobic threshold provides meaningfully fat oxidation and could be acceptable in subjects with high body fat mass.


Author(s):  
Madison M Fullerton ◽  
Louis Passfield ◽  
Martin J. MacInnis ◽  
Danilo Iannetta ◽  
Juan M Murias

Prior constant-load exercise performed for 30-min at or above maximal lactate steady state (MLSSp) significantly impairs subsequent time-to-task failure (TTF) compared with TTF performed without prior exercise. We tested the hypothesis that TTF would decrease in relation to the intensity and the duration of prior exercise compared to a baseline TTF trial. Eleven individuals (6 men, 5 women, 28 ± 8 yrs) completed the following tests on a cycle ergometer (randomly assigned after MLSSp was determined): i) a ramp-incremental test, ii) a baseline TTF trial performed at 80% of peak power (TTFb), iii) five 30-min constant-PO rides at 5% below lactate threshold (LT-5%), halfway between LT and MLSSp (Delta50), 5% below MLSSp (MLSS-5%), MLSSp, and 5% above MLSSp (MLSS+5%), and iv) 15- and 45-min rides at MLSSp (MLSS15 and MLSS45, respectively). Each condition was immediately followed by a TTF trial at 80% of peak power. Compared to TTFb (330 ± 52s), there was 8.0 ± 24.1, 23.6 ± 20.2, 41.0 ± 14.8, 52.2 ± 18.9, and 75.4 ± 7.4% reduction in TTF following LT-5%, Delta50, MLSS-5%, MLSSp, and MLSS+5%, respectively. Following MLSS15 and MLSS45 there were 29.0 ± 20.1 and 69.4 ± 19.6% reductions in TTF, respectively (P <0.05). It is concluded that TTF is reduced following prior exercise of varying duration at MLSSp and at submaximal intensities below MLSS. Novelty: •Prior constant-PO exercise, performed at intensities below MLSSp, reduces subsequent TTF performance. •Subsequent TTF performance is reduced in a linear fashion following an increase in the duration of constant-PO exercise at MLSSp.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Lässing ◽  
R. Falz ◽  
C. Pökel ◽  
S. Fikenzer ◽  
U. Laufs ◽  
...  

AbstractWearing face masks reduce the maximum physical performance. Sports and occupational activities are often associated with submaximal constant intensities. This prospective crossover study examined the effects of medical face masks during constant-load exercise. Fourteen healthy men (age 25.7 ± 3.5 years; height 183.8 ± 8.4 cm; weight 83.6 ± 8.4 kg) performed a lactate minimum test and a body plethysmography with and without masks. They were randomly assigned to two constant load tests at maximal lactate steady state with and without masks. The cardiopulmonary and metabolic responses were monitored using impedance cardiography and ergo-spirometry. The airway resistance was two-fold higher with the surgical mask (SM) than without the mask (SM 0.58 ± 0.16 kPa l−1 vs. control [Co] 0.32 ± 0.08 kPa l−1; p < 0.01). The constant load tests with masks compared with those without masks resulted in a significantly different ventilation (77.1 ± 9.3 l min−1 vs. 82.4 ± 10.7 l min−1; p < 0.01), oxygen uptake (33.1 ± 5 ml min−1 kg−1 vs. 34.5 ± 6 ml min−1 kg−1; p = 0.04), and heart rate (160.1 ± 11.2 bpm vs. 154.5 ± 11.4 bpm; p < 0.01). The mean cardiac output tended to be higher with a mask (28.6 ± 3.9 l min−1 vs. 25.9 ± 4.0 l min−1; p = 0.06). Similar blood pressure (177.2 ± 17.6 mmHg vs. 172.3 ± 15.8 mmHg; p = 0.33), delta lactate (4.7 ± 1.5 mmol l−1 vs. 4.3 ± 1.5 mmol l−1; p = 0.15), and rating of perceived exertion (6.9 ± 1.1 vs. 6.6 ± 1.1; p = 0.16) were observed with and without masks. Surgical face masks increase airway resistance and heart rate during steady state exercise in healthy volunteers. The perceived exertion and endurance performance were unchanged. These results may improve the assessment of wearing face masks during work and physical training.


Sign in / Sign up

Export Citation Format

Share Document