broad energy
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 33)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
pp. 260-270
Author(s):  
Sergey M. Polozov ◽  
Vladimir I. Rashchikov

Conventionally, electron guns with thermionic cathodes or field-emission cathodes are used for research or technological linear accelerators. RF-photoguns are used to provide the short electron bunches which could be used for FEL’s of compact research facilities to generate monochromatic photons. Low energy of emitted electrons is the key problem for photoguns due to high influence of Coulomb field and difficulties with the first accelerating cell simulation and construction. Contrary, plasma sources, based on the laser-plasma wakefield acceleration, have very high acceleration gradient but rather broad energy spectrum compared with conventional thermoguns or field-emission guns. The beam dynamics in the linear accelerator combines the laser-plasma electron source and conventional RF linear accelerator is discussed in this paper. Method to capture and re-accelerate the short picosecond bunch with extremely broad energy spread (up to 50 %) is presented. Numerical simulation shows that such bunches can be accelerated in RF linear accelerator to the energy of 50 MeV with output energy spread not higher than 1 % .


2021 ◽  
Vol 922 (2) ◽  
pp. 159
Author(s):  
A. Traina ◽  
S. Marchesi ◽  
C. Vignali ◽  
N. Torres-Albà ◽  
M. Ajello ◽  
...  

Abstract We present the joint Chandra, XMM-Newton, and NuSTAR analysis of two nearby Seyfert galaxies, NGC 3081 and ESO 565-G019. These are the only two having Chandra data in a larger sample of 10 low-redshift (z ≤ 0.05), candidates Compton-thick (CT) Active Galactic Nuclei selected in the 15–150 keV band with Swift-BAT that were still lacking NuSTAR data. Our spectral analysis, performed using physically motivated models, provides an estimate of both the line-of-sight (l.o.s.) and average (N H,S ) column densities of the two torii. NGC 3081 has a Compton-thin l.o.s. column density N H,z = [0.58–0.62] × 1024 cm−2, but the N H,S , beyond the CT threshold (N H,S = [1.41–1.78] × 1024 cm−2), suggests a “patchy” scenario for the distribution of the circumnuclear matter. ESO 565-G019 has both CT l.o.s. and N H,S column densities (N H,z > 2.31 × 1024 cm−2 and N H,S > 2.57 × 1024 cm−2, respectively). The use of physically motivated models, coupled with the broad energy range covered by the data (0.6–70 keV and 0.6–40 keV, for NGC 3081 and ESO 565-G019, respectively) allows us to constrain the covering factor of the obscuring material, which is C TOR = [0.63–0.82] for NGC 3081, and C TOR = [0.39–0.65] for ESO 565-G019.


Author(s):  
Zechen Lan ◽  
Akifumi Yogo

Abstract Neutron beams have been providing dispensable tools for wide range of fields in modern science and engineering. Recently, a new type of pulsed neutron source has been developed, known as Laser-Driven Neutron Source (LDNS). The LDNSs utilize the laser-accelerated ions, including protons and deuterons as a primary beam and generate neutrons from a secondary target (lithium, beryllium, etc.) via nuclear reaction. Applying an additional moderator part, LDNSs can provide a broad energy range of neutrons (meV∼MeV). This paper aims to introduce the current status of LDNS and the results of application-oriented experiments implemented at Institute of Laser Engineering (ILE) of Japan.


2021 ◽  
Vol 136 (9) ◽  
Author(s):  
S. Palmerini ◽  
M. La Cognata ◽  
F. Hammache ◽  
L. Acosta ◽  
R. Alba ◽  
...  

AbstractThe $$^{27}\hbox {Al}(\hbox {p},\alpha )^{24}\hbox {Mg}$$ 27 Al ( p , α ) 24 Mg reaction, which drives the destruction of $$^{27}$$ 27 Al and the production of $$^{24}\hbox {Mg}$$ 24 Mg in stellar hydrogen burning, has been investigated via the Trojan Horse Method (THM), by measuring the $$^2\hbox {H}(^{27}\hbox {Al},\alpha ^{24}\hbox {Mg})\hbox {n}$$ 2 H ( 27 Al , α 24 Mg ) n three-body reaction. The experiment covered a broad energy range ($$E_\mathrm{c.m.}\le \,1.5\,\hbox {MeV}$$ E c . m . ≤ 1.5 MeV ), aiming to investigate those of interest for astrophysics. The results confirm the THM as a valuable technique for the experimental study of fusion reactions at very low energies and suggest the presence of a rich pattern of resonances in the energy region close to the Gamow window of stellar hydrogen burning (70–120 keV), with potential impact on astrophysics. To estimate such an impact a second run of the experiment is needed, since the background due the three-body reaction hampered to collect enough data to resolve the resonant structures and extract the reaction rate.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 140
Author(s):  
Maria B. Barbaro ◽  
Arturo De Pace ◽  
Luisa Fiume

High-precision studies of Beyond-Standard-Model physics through accelerator-based neutrino oscillation experiments require a very accurate description of neutrino–nucleus cross-sections in a broad energy region, going from quasielastic scattering up to deep, inelastic scattering. In this work, we focus on the following processes: quasielastic scattering, two-particle-two-hole excitations, and the excitation of the first (Delta) and second (Roper) resonances of the nucleon. The nuclear model is fully relativistic and includes both one- and two-body currents. We compare our results with recent T2K and MicroBooNE data on carbon and argon targets, and present predictions for DUNE kinematics.


2021 ◽  
Author(s):  
Zigong Xu ◽  
Johan L. Freiherr von Forstner ◽  
Patrick Kühl ◽  
Nils Janitzek ◽  
César Martín ◽  
...  

<p>As part of the Energetic Particle Detector (EPD) suite onboard Solar Orbiter, the High Energy Telescope has been launched on its mission to the Sun on February 9, 2020, and has been measuring energetic particles since it was first switched on about two weeks after launch. Using their double-ended telescopes, the two HET units provide measurements of ions above 7 MeV/nuc and electrons above 300 keV in four viewing directions. HET observed several Solar Energetic Particle (SEPs) events during the cruise phase, including the first one with a broad energy coverage (up to ~100MeV) on 29 Nov 2020. Being the first larger SEP event in a phase of rising solar activity, these measurements have already attracted extensive attention of the community. Apart from the SEPs, the HET can be used to observe the Galactic cosmic radiation (GCR) and its temporal variation. The GCR measurements can be also utilized for the validation of the energy response of HET. The overall spectra observed by HET are as expected, except for calibration issues in some specific energy bins that we are still investigating. Finally, the HET also observed several Forbush Decreases (FD), i.e. cosmic ray decreases caused by CMEs and their embedded magnetic field. Here, the capabilities and data products of HET, as well as first measurements of SEPs, GCR and FDs are presented. </p>


2021 ◽  
pp. 159685
Author(s):  
Joseph Vimal Vas ◽  
Rohit Medwal ◽  
Ushnish Chaudhuri ◽  
Mayank Mishra ◽  
Avinash Chaurasiya ◽  
...  

2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Constantinos Papadimitriou ◽  
Sigiava Aminalragia-Giamini ◽  
Ioannis A. Daglis ◽  
Ingmar Sandberg ◽  
...  

Abstract. The nature of the semi-annual variation in the relativistic electron fluxes in the Earth’s outer radiation belt is investigated using Van Allen Probes (MagEIS and REPT) and GOES (EPS) data during solar cycle 24. We perform wavelet and cross-wavelet analysis in a broad energy and spatial range of electron fluxes and examine their phase relationship with the axial, equinoctial and Russell-McPherron mechanisms. It is found that the semi-annual variation in the relativistic electron fluxes exhibits pronounced power in the 0.3–4.2 MeV energy range at L-shells higher than 3.5 and, moreover, it exhibits an in-phase relationship with the Russell-McPherron effect indicating the former is primarily driven by the latter. Furthermore, the analysis of the past 3 solar cycles with GOES/EPS indicates that the semi-annual variation at geosynchronous orbit is evident during the descending phases and coincides with periods of a higher (lower) HSS (ICME) occurrence.


Sign in / Sign up

Export Citation Format

Share Document