nuclear rna polymerase
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Andrew Loffer ◽  
Jasleen Singh ◽  
Akihito Fukudome ◽  
Vibhor Mishra ◽  
Feng Wang ◽  
...  

In plants, selfish genetic elements including retrotransposons and DNA viruses are transcriptionally silenced by RNA-directed DNA methylation. Guiding the process are short interfering RNAs (siRNAs) cut by DICER-LIKE 3 (DCL3) from double-stranded precursors of ~30 bp synthesized by NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). We show that Pol IV initiating nucleotide choice, RDR2 initiation 1-2 nt internal to Pol IV transcript ends and RDR2 terminal transferase activity collectively yield a code that influences which end of the precursor is diced and whether 24 or 23 nt siRNAs are generated from the Pol IV or RDR2-transcribed strands. By diversifying the size, sequence, and strand polarity of siRNAs derived from a given precursor, alternative patterns of DCL3 dicing allow maximal siRNA coverage at methylated target loci.


2021 ◽  
Vol 7 (6) ◽  
pp. 467
Author(s):  
Hua Zheng ◽  
Min Qiao ◽  
Yifan Lv ◽  
Xing Du ◽  
Ke-Qin Zhang ◽  
...  

During the investigation of endophytic fungi diversity in aquatic plants and the fungal diversity in soil in southwest China, we obtained 208 isolates belonging to Trichoderma, including 28 isolates as endophytes from aquatic plants and 180 isolates as saprobes from soil, respectively. Finally, 23 new species of Trichoderma are recognized by further studies. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha (tef1) and gene encoding of the second largest nuclear RNA polymerase subunit (rpb2). The results revealed that the 23 new species are distributed in nine known clades. The morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives were compared and discussed. These include: Trichoderma achlamydosporum, T. amoenum, T. anaharzianum, T. anisohamatum, T. aquatica, T. asiaticum, T. asymmetricum, T. inaequilaterale, T. inconspicuum, T. insigne, T. obovatum, T. paraviride, T. pluripenicillatum, T. propepolypori, T. pseudoasiaticum, T. pseudoasperelloides, T. scorpioideum, T. simile, T. subazureum, T. subuliforme, T. supraverticillatum, T. tibetica, and T. uncinatum.


2021 ◽  
Vol 118 (13) ◽  
pp. e2019276118
Author(s):  
Vibhor Mishra ◽  
Jasleen Singh ◽  
Feng Wang ◽  
Yixiang Zhang ◽  
Akihito Fukudome ◽  
...  

In plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24-nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 coimmunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that an interval near the RDR2 active site contacts the Pol IV catalytic subunit, NRPD1, the largest of Pol IV’s 12 subunits. Contacts between the catalytic regions of the two enzymes suggests that RDR2 is positioned to rapidly engage the free 3′ ends of Pol IV transcripts and convert these single-stranded transcripts into double-stranded RNAs (dsRNAs).


MycoKeys ◽  
2020 ◽  
Vol 73 ◽  
pp. 109-132
Author(s):  
Xin Gu ◽  
Rui Wang ◽  
Quan Sun ◽  
Bing Wu ◽  
Jing-Zu Sun

The Harzianum clade of Trichoderma comprises many species, which are associated with a wide variety of substrates. In this study, four new species of Trichoderma, namely T. lentinulae, T. vermifimicola, T. xixiacum, and T. zelobreve, were encountered from a fruiting body and compost of Lentinula, soil, and vermicompost. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the gene encoding the second largest nuclear RNA polymerase subunit (RPB2), the translation elongation factor 1-α encoding gene (TEF1-α). The analysis combining sequences of the three gene regions distinguished four new species in the Harzianum clade of Trichoderma. Among them, T. lentinulae and T. xixiacum clustered with T. lixii, from which these new species differ in having shorter phialides and smaller conidia. Additionally, T. lentinulae differs from T. xixiacum in forming phialides with inequilateral to a strongly-curved apex, cultural characteristics, and slow growth on PDA. Trichoderma vermifimicola is closely related to T. simmonsii, but it differs from the latter by producing phialides in verticillate whorls and smaller conidia. Trichoderma zelobreve is the sister species of T. breve but is distinguished from T. breve by producing shorter and narrower phialides, smaller conidia, and by forming concentric zones on agar plates. This study updates our knowledge of species diversity of Trichoderma.


2020 ◽  
Author(s):  
Vibhor Mishra ◽  
Jasleen Singh ◽  
Akihito Fukudome ◽  
Feng Wang ◽  
Yixiang Zhang ◽  
...  

AbstractIn plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24 nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 co-immunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that RDR2 stably associates with Pol IV’s largest catalytic subunit, NRPD1 at three sites, all within the clamp module. The clamp is a ubiquitous feature of DNA-dependent RNA polymerases that opens to allow DNA template entry and closes to encase the DNA-RNA hybrid adjacent to the RNA exit channel. The clamp also provides binding sites for polymerase-specific subunits or regulatory proteins, thus RDR2 binding to the Pol IV clamp is consistent with this theme. Within RDR2, the site of interaction with NRPD1 is very near the catalytic center. The locations of the NRPD1-RDR2 contact sites suggest a model in which transcripts emanating from Pol IV’s RNA exit channel align with the template cleft of RDR2, facilitating rapid conversion of terminated Pol IV transcripts into double-stranded RNAs.Significance StatementShort interfering RNAs (siRNAs) play important roles in gene regulation by inhibiting mRNA translation into proteins or by guiding chromatin modifications that inhibit gene transcription. In plants, transcriptional gene silencing is guided by siRNAs derived from double-stranded (ds) RNAs generated by coupling the activities of DNA-dependent NUCLEAR RNA POLYMERASE IV and RNA-DEPENDENT RNA POLYMERASE 2. We show that the physical basis for Pol IV-RDR2 coupling is RDR2 binding to the clamp domain of Pol IV’s largest subunit. The positions of the protein docking sites suggest that nascent Pol IV transcripts are generated in close proximity to RDR2’s catalytic site, enabling rapid conversion of Pol IV transcripts into dsRNAs.


MycoKeys ◽  
2018 ◽  
Vol 44 ◽  
pp. 63-80 ◽  
Author(s):  
Min Qiao ◽  
Xing Du ◽  
Zhe Zhang ◽  
JianPing Xu ◽  
ZenFen Yu

Fungi in the genus Trichoderma are widely distributed in China, including in Yunnan province. In this study, we report three new soil-inhabiting species in Trichoderma, named as T.kunmingense, T.speciosum and T.zeloharzianum. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the translation elongation factor 1-α encoding gene (tef1) and the gene encoding the second largest nuclear RNA polymerase subunit (rpb2). Our analyses indicated that the three new species showed consistent divergence amongst each other and from other known and closely related species. Amongst the three, T.speciosum and T.kunmingense belong to the Viride Clade. Specifically, T.speciosum is related to three species – T.hispanicum, T.samuelsii and T.junci and is characterised by tree-like conidiophores, generally paired branches, curved terminal branches, spindly to fusiform phialides and subglobose to globose conidia. In contrast, T.kunmingense morphologically resembles T.asperellum and T.yunnanense and is distinguished by its pyramidal conidiophores, ampulliform to tapered phialides, discrete branches and ovoidal, occasionally ellipsoid, smooth-walled conidia. The third new species, T.zeloharzianum, is a new member of the Harzianum Clade and is closely associated with T.harzianum, T.lixii and T.simmonsii but distinguished from them by having smaller, subglobose to globose, thin-walled conidia.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Todd Blevins ◽  
Ram Podicheti ◽  
Vibhor Mishra ◽  
Michelle Marasco ◽  
Jing Wang ◽  
...  

In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3’ termini. The 24 nt siRNAs primarily correspond to the 5’ or 3’ ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.


2011 ◽  
Vol 30 (14) ◽  
pp. 2982-2982 ◽  
Author(s):  
Wiebke Wlotzka ◽  
Grzegorz Kudla ◽  
Sander Granneman ◽  
David Tollervey

2011 ◽  
Vol 66 (3-4) ◽  
pp. 159-166 ◽  
Author(s):  
Kiril Mishev ◽  
Anna Dimitrova ◽  
Evguéni D. Ananiev

In contrast to differentiated leaves, the regulatory mechanisms of chloroplast gene expression in darkened cotyledons have not been elucidated. Although some results have been reported indicating accelerated senescence in Arabidopsis upon reillumination, the capacity of cotyledons to recover after dark stress remains unclear. We analysed the effect of twodays dark stress, applied locally or at the whole-plant level, on plastid gene expression in zucchini cotyledons. Our results showed that in the dark the overall chloroplast transcription rate was much more inhibited than the nuclear run-on transcription. While the activities of the plastid-encoded RNA polymerase (PEP) and nuclear RNA polymerase II were strongly reduced, the activities of the nuclear-encoded plastid RNA polymerase (NEP) and nuclear RNA polymerase I were less affected. During recovery upon reillumination, chloroplast transcription in the cotyledons was strongly stimulated (3-fold) compared with the naturally senescing controls, suggesting delayed senescence. Northern blot and dot blot analyses of the expression of key chloroplast-encoded photosynthetic genes showed that in contrast to psbA, which remained almost unaffected, both the transcription rate and mRNA content of psaB and rbcL were substantially decreased


Sign in / Sign up

Export Citation Format

Share Document