platelet functions
Recently Published Documents


TOTAL DOCUMENTS

433
(FIVE YEARS 52)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Syarifah Syahirah Syed Abas ◽  
Noralisa Abdul Karim ◽  
Petrick Periyasamy ◽  
Nurasyikin Yusof ◽  
Shamsul Azhar Shah ◽  
...  

Dengue mortality remains high despite monitoring against warning signs (WS). The associations of WS at febrile phase (FP) and hemorrhage at defervescence with the levels and kinetics of ROTEM, platelet count, cortisol, and ferritin were analyzed. Patients with confirmed dengue serology and WS in two centers were screened (n = 275) and 62 eligible patients were recruited prospectively over 9 months. “Vomiting” was the commonest WS (62.9%), with shortened clotting time (CT) INTEM (p = 0.01). “Hematocrit increase” showed significant prolonged CT INTEM, EXTEM, and FIBTEM (p < 0.05). “Platelet decrease” showed reduced platelet function and reduced clot amplitude at 10 min (A10) and maximum clot firmness (MCF) in INTEM and EXTEM (p < 0.001). The kinetics were reduced in platelet count, CT EXTEM, and cortisol (p < 0.05) but increased in CT INTEM (p = 0.03). At FP, “vomiting”, “hematocrit increase”, and “platelet decrease” demonstrated impaired CT, clot strengths A10/MCF and platelet functions. Majority (60/62, 96.7%) had non-severe outcomes, consistent with increase in cortisol kinetics. In conclusion, “vomiting”, “hematocrit increase” and “platelet decrease” at FP correlated with ROTEM. No conclusion could be made further regarding ferritin and cortisol. Larger study is required to study “hematocrit increase” with ROTEM as a potential marker for hemorrhage.


Author(s):  
Madhumita Chatterjee

The manifold actions of the pro-inflammatory and regenerative chemokine CXCL12/SDF-1&alpha; are executed through the canonical GProteinCoupledReceptor CXCR4, and the non-canonical ACKR3/CXCR7. Platelets express CXCR4, ACKR3/CXCR7, and are a vital source of CXCL12/SDF-1&alpha; themselves. In recent years, a regulatory impact of the CXCL12-CXCR4-CXCR7 axis on platelet biogenesis i.e. megakaryopoiesis, thrombotic and thrombo-inflammatory ac-tions have been revealed through experimental and clinical studies. Platelet surface expression of ACKR3/CXCR7 is significantly enhanced following myocardial infarction (MI) in acute coro-nary syndrome (ACS) patients, also associated with improved functional recovery and progno-sis. The therapeutic implications of ACKR3/CXCR7 in myocardial regeneration and improved recovery following an ischemic episode, are well documented. Cardiomyocytes, cardi-ac-fibroblasts, endothelial lining of the blood vessels perfusing the heart, besides infiltrating platelets and monocytes, all express ACKR3/CXCR7. This review recapitulates ligand induced differential trafficking of platelet CXCR4-ACKR3/CXCR7 affecting their surface availability, and in regulating thrombo-inflammatory platelet functions and survival through CXCR4 or ACKR3/CXCR7. It emphasizes the pro-thrombotic influence of CXCL12/SDF-1&alpha; exerted through CXCR4, as opposed to the anti-thrombotic impact of ACKR3/CXCR7. Offering an innovative translational perspective, this review also discusses the advantages and challenges of utilizing ACKR3/CXCR7 as a potential anti-thrombotic strategy in platelet associated cardiovascular dis-orders, particularly in coronary artery disease (CAD) patients post-MI.


Author(s):  
Sherif W. Mansour ◽  
Mai M. Hasan ◽  
Hossam E. Salah ◽  
Talal El-Deep ◽  
Samia Hussein ◽  
...  

Abstract Background Irisin is an adipomyokine with a promising potential for the treatment of metabolic disturbances and endothelial dysfunction. This study aimed to explore the effect of irisin on metabolic and platelet functions, and to explore the possible involvement of soluble receptor of advanced glycation end product (sRAGE) in the type 2 diabetes mellitus (T2DM) rat model. Thirty-three adult male albino rats were divided into three groups: normal control, vehicle-treated T2DM group, and irisin-treated T2DM. At the end of the study period, metabolic parameters, platelet count, mean platelet volume, platelet distribution width, plateletcrit, and serum sRAGE were determined. Results Irisin significantly improved platelet function and metabolic derangements induced by T2DM and significantly increased sRAGE. sRAGE was significantly negatively associated with platelet function parameters and some glucometabolic parameters. Additionally, mean platelet volume showed a significant predictive value for the change in serum sRAGE. Conclusions Irisin could have a protective role against diabetes-induced platelet dysfunction by increasing sRAGE levels, indicating the potential beneficial effects of sRAGE in the type 2 diabetic rat model.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Octave ◽  
L Pirotton ◽  
A Ginion ◽  
V Robaux ◽  
S Lepropre ◽  
...  

Abstract Introduction Acetyl-CoA carboxylase (ACC), the first enzyme regulating lipid synthesis, promotes thrombus formation by increasing platelet phospholipid content. Inhibition of its activity decreases lipogenesis and increases the content in acetyl-CoA which can serve as a substrate for protein acetylation. This posttranslational modification plays a key role in the regulation of platelet aggregation, via tubulin acetylation. Purpose To demonstrate that ACC inhibition may affect platelet functions via an alteration of lipid content and/or tubulin acetylation. Methods Platelets were treated 2 hours with CP640.186, a pharmacological ACC inhibitor, prior to thrombin stimulation. Platelet functions were assessed by aggregometry and flow cytometry. Lipogenesis was measured via 14C-acetate incorporation into lipids. Lipidomics analysis was carried out on the commercial Lipidyzer platform. Protein phosphorylation and acetylation were evaluated by western blot. Results Treatment with CP640.186 drastically decreased platelet lipogenesis. However, the quantitative lipidomics analyses showed that preincubation with the compound did not affect global platelet lipid content. Interestingly, this short-term ACC inhibition was sufficient to increase tubulin acetylation level, at basal state and after thrombin stimulation. It was associated with an impaired platelet aggregation, in response to low thrombin concentration, while granules secretion was not affected. Mechanistically, we highlighted a decrease in Rac1 activity, associated with a reduced phosphorylation of its downstream effector PAK2. Surprisingly, actin cytoskeleton was not impacted but we evidenced a significant decrease in ROS production which could result from a decreased NOX2 activity. Conclusion Pharmacological ACC inhibition decreases platelet aggregation upon thrombin stimulation. The mechanism depends on increased tubulin acetylation, with subsequent alteration of the Rac1/PAK2/NOX2 signaling pathway FUNDunding Acknowledgement Type of funding sources: Other. Main funding source(s): Fonds pour la formation à la Recherche dans l'Industrie et l'Agriculture (FRIA)


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M Octave ◽  
L Pirotton ◽  
A Ginion ◽  
V Robaux ◽  
S Lepropre ◽  
...  

Abstract Background Acetyl-CoA carboxylase (ACC), the first enzyme regulating lipid synthesis, promotes thrombus formation by increasing platelet phospholipid content and thromboxane A2 generation. Purpose Our study sought to evaluate whether ACC1 platelet-specific deletion may affect platelet functions by decreasing phospholipid content. Methods We generated a new Cre transgenic mouse strain that allows megakaryocyte/platelet specific ACC1 deletion (GpIbCre+/− x ACC1 flx/flx mouse). In vitro, platelet functions were assessed by aggregometry and flow cytometry. In vivo, hemostasis was assessed via the measurement of bleeding time. Lipidomics analysis was carried out on the commercial Lipidyzer platform. Thromboxane A2 secretion was evaluated by ELISA. Results As expected, ACC1 deletion was restricted to the megakaryocytic lineage. Hematological parameters in platelet-specific ACC1 knockout mice showed a decrease in platelet count by 30% and an increase in platelet volume by 31%, compared to ACC1 flx/flx platelets. In vitro, platelets from platelet-specific ACC1 knockout mice displayed a decrease in thrombin and CRP-induced platelet aggregation, associated with impaired dense granules secretion. In contrast, ADP-induced platelet aggregation was higher in the absence of ACC1. In vivo, platelet-specific ACC1 knockout mice showed a normal bleeding time. In agreement with our hypothesis, lipidomics analyses showed that ACC1 deletion in platelets was associated with a significant decrease in arachidonic acid-contaning phosphatidylethanolamine plasmalogen, and subsequently with a reduced production of thromboxane A2 upon thrombin or CRP stimulation. Conclusion Platelet-specific ACC1 deletion led to a decrease in phospholipid content which, in turn, decreased platelet thromboxane A2 generation, dense granules secretion and aggregation upon thrombin and CRP, but not ADP stimulation. Further studies are needed to elucidate the impact of ADP on platelet functions FUNDunding Acknowledgement Type of funding sources: Other. Main funding source(s): Fonds pour la formation à la Recherche dans l'Industrie et l'Agriculture (FRIA)


2021 ◽  
Vol 25 (19) ◽  
pp. 9268-9280
Author(s):  
Abdullah Al Subayyil ◽  
Yasser S. Basmaeil ◽  
Reem Alenzi ◽  
Tanvir Khatlani

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1998
Author(s):  
Daniëlle M. Coenen ◽  
Alexandra C. A. Heinzmann ◽  
Silvia Oggero ◽  
Hugo J. Albers ◽  
Magdolna Nagy ◽  
...  

Objective: platelets possess not only haemostatic but also inflammatory properties, which combined are thought to play a detrimental role in thromboinflammatory diseases such as acute coronary syndromes and stroke. Phosphodiesterase (PDE) 3 and -5 inhibitors have demonstrated efficacy in secondary prevention of arterial thrombosis, partially mediated by their antiplatelet action. Yet it is unclear whether such inhibitors also affect platelets’ inflammatory functions. Here, we aimed to examine the effect of the PDE3A inhibitor cilostazol and the PDE5 inhibitor tadalafil on platelet function in various aspects of thromboinflammation. Approach and results: cilostazol, but not tadalafil, delayed ex vivo platelet-dependent fibrin formation under whole blood flow over type I collagen at 1000 s−1. Similar results were obtained with blood from Pde3a deficient mice, indicating that cilostazol effects are mediated via PDE3A. Interestingly, cilostazol specifically reduced the release of phosphatidylserine-positive extracellular vesicles (EVs) from human platelets while not affecting total EV release. Both cilostazol and tadalafil reduced the interaction of human platelets with inflamed endothelium under arterial flow and the release of the chemokines CCL5 and CXCL4 from platelets. Moreover, cilostazol, but not tadalafil, reduced monocyte recruitment and platelet-monocyte interaction in vitro. Conclusions: this study demonstrated yet unrecognised roles for platelet PDE3A and platelet PDE5 in platelet procoagulant and proinflammatory responses.


2021 ◽  
Vol 22 (15) ◽  
pp. 7894
Author(s):  
Théo Ebermeyer ◽  
Fabrice Cognasse ◽  
Philippe Berthelot ◽  
Patrick Mismetti ◽  
Olivier Garraud ◽  
...  

Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document