screw feed
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 30)

H-INDEX

12
(FIVE YEARS 3)

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 249
Author(s):  
Hongliang Liu ◽  
Zhaofeng Rao ◽  
Ruda Pang ◽  
Yaoman Zhang

The heat generated by the ball screw feed system will produce thermal errors, which will cause the positioning accuracy to decrease. The thermal simulation modeling of the ball screw feed system is the basis for compensating thermal errors. The current thermal characteristic modeling method simplifies the reciprocating movement of the nut pair on the screw shaft to varying degrees, which leads to a decrease in simulation accuracy. In this paper, the nut is regarded as a moving heat source, and a novel method is adopted to make the moving process of the heat source closer to the actual nut movement process. The finite difference method is used to simulate the temperature field and thermal error of the ball screw feed system under different working conditions. Firstly, based on the heat transfer theory, the heat conduction differential equation of the feed system is established and discretized. The thermal error model of the ball screw feed system is established. Then, the relationship between nut heat source position and operating time is established to simulate nut reciprocating motion. Finally, the temperature and thermal error experiments of the ball screw feed system were carried out, and the temperature experiment results were compared with the simulation results of the finite difference method. The results show that the maximum simulation error of the average temperature in the operating interval is 11.4%, and the maximum simulation error of thermal error is 16.4%, which verifies the validity and correctness of the method. The thermal characteristic modeling method of the ball screw feed system proposed in this paper has a substantial application value for accurately obtaining the temperature field of the feed system.


2021 ◽  
Vol 157 ◽  
pp. 107717
Author(s):  
Zhendong Liu ◽  
Mengtao Xu ◽  
Hongzhuang Zhang ◽  
HuiHui Miao ◽  
Zhenyuan Li ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7070
Author(s):  
Chang Liu ◽  
Chunyu Zhao ◽  
Zhendong Liu ◽  
Shuai Wang

In this paper, a nine degree-of-freedom dynamic model of the ball screw feed system considering the contact nonlinearity between balls and raceways is established to analyze the vibration characteristics. The position relationship between raceway centers for the ball screw and bearings is determined by using the homogeneous coordinate transformation, and then the restoring force functions along the axial and lateral directions are derived. The dynamic equations of the feed system are solved by using Newmark method, and the proposed model is verified by the experimental method. Furthermore, the effect of the excitation amplitude on the axial vibration of the feed system is investigated by the frequency-amplitude curve and 3-D frequency spectrum. With the increase of excitation amplitude, the dynamic response of the feed system exits the softening, hardening type nonlinearity and jump phenomenon. Additionally, the effects of the initial contact angle, length of screw shaft and number of loaded balls on the axial vibration of the feed system in the resonance region are discussed. The results show that the dynamic model established in this paper is suitable for improving the machining accuracy and stability of the ball screw feed system.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Cunfan Zou ◽  
Huijie Zhang ◽  
Jun Zhang ◽  
Dongdong Song ◽  
Hui Liu ◽  
...  

AbstractThe distinguishing feature of a vertical ball screw feed system without counterweight is that the spindle system weight directly acts on the kinematic joints. Research into the dynamic characteristics under acceleration and deceleration is an important step in improving the structural performance of vertical milling machines. The magnitude and direction of the inertial force change significantly when the spindle system accelerates and decelerates. Therefore, the kinematic joint contact stiffness changes under the action of the inertial force and the spindle system weight. Thus, the system transmission stiffness also varies and affects the dynamics. In this study, a variable-coefficient lumped parameter dynamic model that considers the changes in the spindle system weight and the magnitude and direction of the inertial force is established for a ball screw feed system without counterweight. In addition, a calculation method for the system stiffness is provided. Experiments on a vertical ball screw feed system under acceleration and deceleration with different accelerations are also performed to verify the proposed dynamic model. Finally, the influence of the spindle system position, the rated dynamic load of the screw-nut joint, and the screw tension force on the natural frequency of the vertical ball screw feed system under acceleration and deceleration are studied. The results show that the vertical ball screw feed system has obviously different variable dynamics under acceleration and deceleration. The influence of the rated dynamic load and the spindle system position on the natural frequency under acceleration and deceleration is much greater than that of the screw tension force.


2021 ◽  
Author(s):  
Mengtao Xu ◽  
Changyou Li ◽  
Hongzhuang Zhang ◽  
Zhendong Liu ◽  
Yimin Zhang

Abstract Modern tendency of machine tools design requires more accurate model to predict the system dynamics, in order to anticipate its interaction with machining process. In this paper, a comprehensive dynamic model of ball screw feed system (BSFS) considering nonlinear kinematic joints is introduced to investigate the varying dynamic characteristics when worktable is subjected to combined load from six directions. The load-deformation relationship of each kinematic joint is dealt with a set of translational and angular spring elements. The nonlinear restoring force function of each joint involving coupling displacement is calculated. Based on the lumped mass method, the analytical 18-DOF dynamic equation is formulated by the analysis of force dependence between joints. Model verification tests are conducted. The worktable response exhibits the abundant and fascinating nonlinear phenomena arising in nonlinear joint and coupling effect. The nonlinear behavior behaves significant difference owing to the variations of excitation, platform position, screw length, preload and damping of joints. Thus, the model is promising for comprehension of machine dynamic behavior and for development of sophisticated control strategy.


2021 ◽  
Author(s):  
Jiancheng Yang ◽  
Changyou Li ◽  
Mengtao Xu ◽  
Yimin Zhang

Abstract In order to investigate the effect of thermal expansion on the ball screw feed system (BSFS) of a precision machine tool, theoretical modeling of and experimental study on thermally induced error are focused in this paper. A series of thermal experiments are conducted on the machine tool to measure the temperature of the main heat source and measuring points of BSFS. To classify the main heat sources and discuss the impact on the ball screw feed system separately. By the experimental data of ball screw system, the thermal model of screw shaft in the axial direction is analyzed and verified. Based on the heat generation and transfer analysis of ball screw system, thermal expansion of screw shaft in the axial direction is modeled mathematically. In addition, by analyzing the effects of machining parameters such as rotational speed, preloads and lead, we get the parameter influence of BSFS’s temperature rising and thermal deformation. This work can help us reduce thermal deformation effectively, and improve the precision of CNC machining.


Sign in / Sign up

Export Citation Format

Share Document