positional control
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 26)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Zhibin Xue ◽  
Liangliang Li ◽  
Yixiao Song

In this study, the C-turning, pitching, and flapping propulsion of a robotic dolphin during locomotion were explored. Considering the swimming action required of a three-dimensional (3D) robotic dolphin in the ocean, we propose a maneuverability model that can be applied to the flapping motion to provide precise and stable movements and function as the driving role in locomotion. Additionally, an added tail joint allows for the turning movement with efficient parameters obtained by a fluid-structure coupling method. To obtain a mathematical model, several disturbance signals were considered, including systematic uncertainties of the parameters, the perpetually changing environment, the interference from obstacles with effective fuzzy rules, and a sliding mode of control. Furthermore, a combined strategy of environment recognition was used for the positional control of the robotic dolphin, incorporating sonar, path planning with an artificial potential field, and trajectory tracking. The simulation results show satisfactory performance of the 3D robotic dolphin with respect to flexible movement and trajectory tracking under the observed interference factors.


2021 ◽  
Author(s):  
Badur Tchunashvili ◽  
Mamuka Kobalia ◽  
Alexander Petrosyan ◽  
Revaz Gurgenadze ◽  
Giorgi Bulbulashvili

2021 ◽  
Author(s):  
Nicolle A. Bonar ◽  
David I. Gittin ◽  
Christian P. Petersen

Tissue identity determination is critical for regeneration, and the planarian anteroposterior (AP) axis uses positional control genes expressed from bodywall muscle to determine body regionalization. Canonical Wnt signaling establishes anterior versus posterior pole identities through notum and wnt1 signaling, and two Wnt/FGFRL signaling pathways control head and trunk domains, but their downstream signaling mechanisms are not fully understood. Here we identify a planarian Src homolog that restricts head and trunk identities to anterior positions. src-1(RNAi) animals formed enlarged brains and ectopic eyes and also duplicated trunk tissue, similar to a combination of Wnt/FGFRL RNAi phenotypes. src-1 was required for establishing territories of positional control gene expression, indicating it acts at an upstream step in patterning the AP axis. Double RNAi experiments and eye regeneration assays suggest src-1 can act in parallel to at least some Wnt and FGFRL factors. Co-inhibition of src-1 with other posterior-promoting factors led to dramatic patterning changes and a reprogramming of Wnt/FGFRLs into controlling new positional outputs. These results identify src-1 as a factor that promotes robustness of the AP positional system that instructs appropriate regeneration.


Author(s):  
S. J., Mahendra ◽  
Vishwanath Talasila ◽  
Abhilash G. Dutt

Functional electrical stimulation is an assistive technique used to produce functional movements in patients suffering from neurological impairments. However, existing open-loop clinical FES systems are not adequately equipped to compensate for the nonlinear, time-varying behaviour of the muscles. On the other hand, closed-loop FES systems can compensate for the aforementioned effects by regulating the stimulation to induce desired contractions. Therefore, this work aims to present an approach to implement a closed-loop FES system to enable angular positional control during wrist flexion. First, a Wiener model describing the response of the wrist flexor to pulse width modulated stimulation was identified for two healthy volunteers. Second, a nonlinear PID controller (subject-specific) was designed based on the identified models to enable angular positional control during wrist flexion. Subsequently, the controller was implemented in real-time and was tested against two reference angles on healthy volunteers. This study shows promise that the presented closed-loop FES approach can be implemented to control the angular position during wrist flexion or a novelty of the work when compared with the existing work.


2021 ◽  
Vol 8 (8) ◽  
pp. 211141
Author(s):  
Clément Moreau ◽  
Kenta Ishimoto ◽  
Eamonn A. Gaffney ◽  
Benjamin J. Walker

With the continuing rapid development of artificial microrobots and active particles, questions of microswimmer guidance and control are becoming ever more relevant and prevalent. In both the applications and theoretical study of such microscale swimmers, control is often mediated by an engineered property of the swimmer, such as in the case of magnetically propelled microrobots. In this work, we will consider a modality of control that is applicable in more generality, effecting guidance via modulation of a background fluid flow. Here, considering a model swimmer in a commonplace flow and simple geometry, we analyse and subsequently establish the efficacy of flow-mediated microswimmer positional control, later touching upon a question of optimal control. Moving beyond idealized notions of controllability and towards considerations of practical utility, we then evaluate the robustness of this control modality to sources of variation that may be present in applications, examining in particular the effects of measurement inaccuracy and rotational noise. This exploration gives rise to a number of cautionary observations, which, overall, demonstrate the need for the careful assessment of both policy and behavioural robustness when designing control schemes for use in practice.


2021 ◽  
pp. 002029402198975
Author(s):  
Igor Bélai ◽  
Mikulas Huba ◽  
Damir Vrancic

This paper compares three different position controllers of electrical drives equipped by binomial [Formula: see text] th order filters, which are offering filtering properties important in a quantization noise attenuation. To demonstrate their impact, a non-filtered P-PI control is considered, as a reference. The comparative framework includes a filtered P-PI control, a filtered linear pole assignment PD controllers with a disturbance observer (DO) based integral action and its constrained modification. In terms of a total variation, depending on noise and process properties, all filtered controllers are capable to bring down the undue controller activity at the plant input from 10 to more than 100 times. Furthermore, thanks to the applied disturbance observer, the constrained control derived for a double integrator is shown to fully exploit the closed loop capabilities without any trajectory generation, taking into account the control constraints. Thus, the simplified controller design may focus on other important aspects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric J. Earley ◽  
Reva E. Johnson ◽  
Jonathon W. Sensinger ◽  
Levi J. Hargrove

AbstractAccurate control of human limbs involves both feedforward and feedback signals. For prosthetic arms, feedforward control is commonly accomplished by recording myoelectric signals from the residual limb to predict the user’s intent, but augmented feedback signals are not explicitly provided in commercial devices. Previous studies have demonstrated inconsistent results when artificial feedback was provided in the presence of vision; some studies showed benefits, while others did not. We hypothesized that negligible benefits in past studies may have been due to artificial feedback with low precision compared to vision, which results in heavy reliance on vision during reaching tasks. Furthermore, we anticipated more reliable benefits from artificial feedback when providing information that vision estimates with high uncertainty (e.g. joint speed). In this study, we test an artificial sensory feedback system providing joint speed information and how it impacts performance and adaptation during a hybrid positional-and-myoelectric ballistic reaching task. We found that overall reaching errors were reduced after perturbed control, but did not significantly improve steady-state reaches. Furthermore, we found that feedback about the joint speed of the myoelectric prosthesis control improved the adaptation rate of biological limb movements, which may have resulted from high prosthesis control noise and strategic overreaching with the positional control and underreaching with the myoelectric control. These results provide insights into the relevant factors influencing the improvements conferred by artificial sensory feedback.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Gleice Pereira da Silva ◽  
Roberto Quental Coutinho ◽  
Rafael Antonio da Silva Rosa

Abstract: The positional validation of datasets is an important step for cartography studies since it allows learning about its accuracy, and also indicates the data process quality. However, the positional validation of Synthetic Aperture Radar (SAR) datasets have some additional challenges when compared to optical images due to the geometric distortions. We employ existing targets such as traffic signs and lampposts in the scene and identify them on the image as control points. We performed the validation of the geographic coordinates used as planialtimetric positional control points, using both the amplitude backscattering orthoimage and the Digital Terrain Model (DTM) generated from the InSAR system. We employed the NMAS, ASPRS and NSSDA tests along with information by the Brazilian Standards. This validation showed these control points presented the following results for 1:10,000 scale: NMAS test - class “A” in PEC and PEC-PCD; ASPRS test - RMSE x = 1.317m, RMSE y = 1.231m and RMSE z = 1.145m; and NSSDA test - RMSE r = 1,802m, Precision r = 3.118m and Precision z = 2.244m. These results prove we can use the proposed targets as control points and the used InSAR datasets meet the expected quality for generation of geotechnic products for 1:10,000 scale.


2021 ◽  
pp. 19-23
Author(s):  
ALEKSEI S. DOROKHOV ◽  
◽  
ALEKSEI V. SIBIRYOV ◽  
ALEKSANDR G. AKSENOV ◽  
MAKSIM A. MOSYAKOV ◽  
...  

The authors have carried out analytical studies on the development and rationalization of a system for automatic controlling the depth of tillage, a block diagram and an algorithm for a linear positional control system, as well as off ered a design scheme to develop a control algorithm. A mathematical model describing the control object that regulates the tillage depth has been determined, provided that the motion trajectory of the moving parts of the driving links and the actuator rods of the automatic system controlling the tillage depth is perfectly traced. A structural diagram of a linear system of positional control of the soil tillage depth has been developed, which is a mechanism for adjusting the support wheel with an acting disturbance on the control object, changing the distance between the O axis of the wheel rotation of the tillage machine power tool and the rotation axis of the support wheels of a soil cultivation machine. A design scheme to develop a control algorithm for changing the tillage depth has been obtained. To determine the required accuracy and modes of using hardware in various phase states of the soil layer, a basic set of hardware was identifi ed and analyzed to ensure that it meets the requirements for controlling the tillage depth of the working elements. They include a sensor for determining the penetration depth of the working element; microcontroller (setting and control of regulated force impact on the soil, i.e. vertical movement of the electric cylinder rod); electric cylinders (linear actuators). To test the developed algorithms for the functioning of the automatic control system for adjusting the travel depth of the working elements for presowing soil cultivation, it is necessary to conduct experimental studies in laboratory and production conditions.


Sign in / Sign up

Export Citation Format

Share Document