da release
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 47)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Anna C Everett ◽  
Benjamin E. Graul ◽  
Daniel B. Watts ◽  
James Kayden Robinson ◽  
Rodrigo A. Espana ◽  
...  

Fast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine (DA) release and clearance throughout the brain, including the ventral and dorsal striatum. Striatal DA terminals are abundant with signals heavily regulated by release machinery and the dopamine transporter (DAT). Peak height is a common method for measuring release but can be affected by changes in clearance. The Michaelis-Menten model has been a standard in measuring DA clearance, but requires experimenter fitted modeling subject to experimenter bias. The current study presents the use of the first derivative (velocity) of evoked DA signals as an alternative approach for measuring dopamine release and clearance and can be used to distinguish the two measures. Maximal upwards velocity predicts reductions in DA peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT numbers, predicted maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wildtype C57 (WT) and DAT knock out (DATKO) mice. In contrast, downward velocity was considerably reduced and exponential decay (tau) was increased in DATKO mice, supporting use of both measures for changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23 and PTT on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these measures for DA release and clearance.


2021 ◽  
Author(s):  
Andrew J. Kesner ◽  
Yolanda Mateo ◽  
Karina P. Abrahao ◽  
Stephanie Ramos-Maciel ◽  
Matthew J. Pava ◽  
...  

AbstractWithdrawal symptoms are observed upon cessation of cannabis use in humans. Although animal studies have examined withdrawal symptoms following exposure to delta-9-tetrahydrocannabinol (THC), difficulties in obtaining objective measures of spontaneous withdrawal using paradigms that mimic cessation of use in humans have slowed research. The neuromodulator dopamine (DA) is known to be affected by chronic THC treatment and plays a role in many behaviors related to human THC withdrawal symptoms. These symptoms include sleep disturbances that often drive relapse, and emotional behaviors, e.g., irritability and anhedonia. We examined THC withdrawal-induced changes in striatal DA release and the extent to which sleep disruption and behavioral maladaptation manifest during withdrawal in a mouse chronic cannabis exposure model. Using a THC treatment regimen known to produce tolerance we measured electrically elicited DA release in acute brain slices from different striatal subregions during early and late THC abstinence. Long-term polysomnographic recordings from mice were used to assess vigilance state and sleep architecture before, during, and after THC treatment. We additionally assessed how behaviors that model human withdrawal symptoms are altered by chronic THC treatment in early and late abstinence. We detected altered striatal DA release, sleep disturbances that mimic clinical observations, and behavioral maladaptation in mice following tolerance inducing THC treatment. Sex differences were observed in nearly all metrics. Altered striatal DA release, sleep and affect-related behaviors associated with spontaneous THC abstinence were more consistently observed in male mice. To our knowledge these findings provide the first model of directly translatable non-precipitated cannabis withdrawal symptoms, in particular, sleep disruption.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nicola B. Mercuri ◽  
Mauro Federici ◽  
Francesca Romana Rizzo ◽  
Lorenzo Maugeri ◽  
Sebastian L. D’Addario ◽  
...  

The cellular mechanisms regulating dopamine (DA) release in the striatum have attracted much interest in recent years. By in vitro amperometric recordings in mouse striatal slices, we show that a brief (5 min) exposure to the metabotropic glutamate receptor agonist DHPG (50 μM) induces a profound depression of synaptic DA release, lasting over 1 h from DHPG washout. This long-term depression is sensitive to glycine, which preferentially inhibits local cholinergic interneurons, as well as to drugs acting on nicotinic acetylcholine receptors and to the pharmacological depletion of released acetylcholine. The same DHPG treatment induces a parallel long-lasting enhancement in the tonic firing of presumed striatal cholinergic interneurons, measured with multi-electrode array recordings. When DHPG is bilaterally infused in vivo in the mouse striatum, treated mice display an anxiety-like behavior. Our results demonstrate that metabotropic glutamate receptors stimulation gives rise to a prolonged depression of the striatal dopaminergic transmission, through a sustained enhancement of released acetylcholine, due to the parallel long-lasting potentiation of striatal cholinergic interneurons firing. This plastic interplay between dopamine, acetylcholine, and glutamate in the dorsal striatum may be involved in anxiety-like behavior typical of several neuropsychiatric disorders.


Cell Research ◽  
2021 ◽  
Author(s):  
Zhiyuan Liu ◽  
Qiumin Le ◽  
Yanbo Lv ◽  
Xi Chen ◽  
Jian Cui ◽  
...  

AbstractDopamine (DA) level in the nucleus accumbens (NAc) is critical for reward and aversion encoding. DA released from the ventral mesencephalon (VM) DAergic neurons increases the excitability of VM-projecting D1-dopamine receptor-expressing medium spiny neurons (D1-MSNs) in the NAc to enhance DA release and augment rewards. However, how such a DA positive feedback loop is regulated to maintain DA homeostasis and reward-aversion balance remains elusive. Here we report that the ventral pallidum (VP) projection of NAc D1-MSNs (D1NAc-VP) is inhibited by rewarding stimuli and activated by aversive stimuli. In contrast to the VM projection of D1-MSN (D1NAc-VM), activation of D1NAc-VP projection induces aversion, but not reward. D1NAc-VP MSNs are distinct from the D1NAc-VM MSNs, which exhibit conventional functions of D1-MSNs. Activation of D1NAc-VP projection stimulates VM GABAergic transmission, inhibits VM DAergic neurons, and reduces DA release into the NAc. Thus, D1NAc-VP and D1NAc-VM MSNs cooperatively control NAc dopamine balance and reward-aversion states.


2021 ◽  
Author(s):  
◽  
Anna-Lena Langen

<p>While 3,4-methylenedioxymethamphetamine (MDMA) shares many similarities with amphetamine, previous two choice drug discrimination procedures have shown that substitution between the two substances is inconsistent. Three choice drug discrimination procedures have revealed that MDMA can be discriminated from amphetamine, due to MDMA’s primary influence in releasing 5-HT. Neurochemical evidence had previously suggested that at doses >3.0mg/kg MDMA-induced dopamine (DA) release will increase significantly. In the current study rats were trained to discriminate MDMA from amphetamine and saline. As the dose of MDMA increased beyond the training dose (>1.5mg/kg) MDMA-appropriate responding decreased, while the proportion of amphetamine lever responding increased and eventually surpassed MDMA-appropriate responding at the highest dose (4.5mg/kg). This would indicate an important role for DA mediated influences in MDMA’s discriminative cue properties. Further evidence for this conclusion comes from tests with the D1 antagonist SCH23390 and the D2 antagonist eticlopride which attenuated this effect and also led to a nonsignificant increase in the proportion of saline lever responding. Subsequent tests with the 5-HT2c antagonist RS102221resulted in no significant dose dependent changes, but appeared to reduce MDMA-appropriate responding especially at the training dose. The current findings would suggest that low doses of MDMA are discriminable from amphetamine, however with increasing doses MDMA will be perceived as more “amphetamine-like”. These findings could suggest that at relatively high doses MDMA produces effects that are typically associated with dopamine-releasing drugs, such as high abuse potential.</p>


2021 ◽  
Author(s):  
◽  
Anna-Lena Langen

<p>While 3,4-methylenedioxymethamphetamine (MDMA) shares many similarities with amphetamine, previous two choice drug discrimination procedures have shown that substitution between the two substances is inconsistent. Three choice drug discrimination procedures have revealed that MDMA can be discriminated from amphetamine, due to MDMA’s primary influence in releasing 5-HT. Neurochemical evidence had previously suggested that at doses >3.0mg/kg MDMA-induced dopamine (DA) release will increase significantly. In the current study rats were trained to discriminate MDMA from amphetamine and saline. As the dose of MDMA increased beyond the training dose (>1.5mg/kg) MDMA-appropriate responding decreased, while the proportion of amphetamine lever responding increased and eventually surpassed MDMA-appropriate responding at the highest dose (4.5mg/kg). This would indicate an important role for DA mediated influences in MDMA’s discriminative cue properties. Further evidence for this conclusion comes from tests with the D1 antagonist SCH23390 and the D2 antagonist eticlopride which attenuated this effect and also led to a nonsignificant increase in the proportion of saline lever responding. Subsequent tests with the 5-HT2c antagonist RS102221resulted in no significant dose dependent changes, but appeared to reduce MDMA-appropriate responding especially at the training dose. The current findings would suggest that low doses of MDMA are discriminable from amphetamine, however with increasing doses MDMA will be perceived as more “amphetamine-like”. These findings could suggest that at relatively high doses MDMA produces effects that are typically associated with dopamine-releasing drugs, such as high abuse potential.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan L. Gomez ◽  
Jordi Bonaventura ◽  
Jacqueline Keighron ◽  
Kelsey M. Wright ◽  
Dondre L. Marable ◽  
...  

AbstractCocaine binds to the dopamine (DA) transporter (DAT) to regulate cocaine reward and seeking behavior. Zinc (Zn2+) also binds to the DAT, but the in vivo relevance of this interaction is unknown. We found that Zn2+ concentrations in postmortem brain (caudate) tissue from humans who died of cocaine overdose were significantly lower than in control subjects. Moreover, the level of striatal Zn2+ content in these subjects negatively correlated with plasma levels of benzoylecgonine, a cocaine metabolite indicative of recent use. In mice, repeated cocaine exposure increased synaptic Zn2+ concentrations in the caudate putamen (CPu) and nucleus accumbens (NAc). Cocaine-induced increases in Zn2+ were dependent on the Zn2+ transporter 3 (ZnT3), a neuronal Zn2+ transporter localized to synaptic vesicle membranes, as ZnT3 knockout (KO) mice were insensitive to cocaine-induced increases in striatal Zn2+. ZnT3 KO mice showed significantly lower electrically evoked DA release and greater DA clearance when exposed to cocaine compared to controls. ZnT3 KO mice also displayed significant reductions in cocaine locomotor sensitization, conditioned place preference (CPP), self-administration, and reinstatement compared to control mice and were insensitive to cocaine-induced increases in striatal DAT binding. Finally, dietary Zn2+ deficiency in mice resulted in decreased striatal Zn2+ content, cocaine locomotor sensitization, CPP, and striatal DAT binding. These results indicate that cocaine increases synaptic Zn2+ release and turnover/metabolism in the striatum, and that synaptically released Zn2+ potentiates the effects of cocaine on striatal DA neurotransmission and behavior and is required for cocaine-primed reinstatement. In sum, these findings reveal new insights into cocaine’s pharmacological mechanism of action and suggest that Zn2+ may serve as an environmentally derived regulator of DA neurotransmission, cocaine pharmacodynamics, and vulnerability to cocaine use disorders.


2021 ◽  
Author(s):  
Charles Ducrot ◽  
Gregory de Carvalho ◽  
Benoit Delignat-Lavaud ◽  
Constantin Delmas ◽  
Nicolas Giguere ◽  
...  

Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which glutamate or GABA are released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. Here we tested the hypothesis that the trans-synaptic cell adhesion molecules neurexins (Nrxns) regulate DA neuron neurotransmission. Conditional deletion of all Nrxns in DA neurons (DAT::Nrxns KO) revealed that loss of Nrxns does not impair the basic development and ultrastructural characteristics of DA neuron terminals. However, loss of Nrxns caused an impairment of DA transmission revealed as a reduced rate of DA reuptake following activity-dependent DA release, decreased DA transporter levels, increased vesicular monoamine transporter expression and impaired amphetamine-induced locomotor activity. Strikingly, electrophysiological recording revealed an increase of GABA co-release from DA neuron axons in the striatum of the KO mice. These findings reveal that Nrxns act as key regulators of DA neuron connectivity and DA-mediated functions.


2021 ◽  
Author(s):  
Jinah Lee ◽  
Marina Weinberger ◽  
Yuki Kawahara ◽  
Jia Cheng ◽  
Gali Umscweif ◽  
...  

Cholinergic interneurons (ChIs) of the nucleus accumbens (NAc) are important for mediating the behavioral response to rewarding stimuli. A major role for these cells is to regulate dopamine (DA) transmission by activating cholinergic receptors at local DAergic nerve terminals. However, the mechanisms that enable cholinergic neurons to enhance DA release in response to reward remain unknown. Here we report that the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) in NAc ChIs mediates an enhancement in DA signaling in response to rewarding stimuli. The HCN current in NAc ChIs and its modulation by DA, as well as the increase in cholinergic efflux by local cocaine infusion were impaired in mice with deletion of HCN2 in cholinergic cells. Enhancement in the DA efflux and signaling in the NAc in response to rewarding stimuli, as well as cocaine conditioning were also dependent on HCN2 in ChIs. These results provide a mechanistic link between the activity of NAc ChIs and reward encoding.


2021 ◽  
Author(s):  
Benoit Delignat-Lavaud ◽  
Jana Kano ◽  
Charles Ducrot ◽  
Ian Masse ◽  
Sriparna Mukherjee ◽  
...  

Midbrain dopamine (DA) neurons, a population of cells that are critical for motor control, motivated behaviors and cognition, release DA via an exocytotic mechanism from both their axonal terminals and their somatodendritic (STD) compartment. In Parkinson's disease (PD), it is striking that motor dysfunctions only become apparent after extensive loss of DA innervation. Although it has been hypothesized that this resilience is due to the ability of many motor behaviors to be sustained through a basal tone of DA and diffuse transmission, experimental evidence for this is limited. Here we conditionally deleted the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (cKODA mice) to abrogate most activity-dependent axonal DA release in the striatum and mesencephalon, leaving STD DA release intact. Strikingly, Syt1 cKODA mice showed intact performance in multiple unconditioned DA-dependent motor tasks, suggesting that activity-dependent DA release is dispensable for such basic motor functions. Basal extracellular levels of DA in the striatum were unchanged, suggesting that a basal tone of extracellular DA is sufficient to sustain basic movement. We also found multiple adaptations in the DA system of cKODA mice, similar to those happening at early stages of PD. Taken together, our findings reveal the striking resilience of DA-dependent motor functions in the context of a near-abolition of phasic DA release, shedding new light on why extensive loss of DA innervation is required to reveal motor dysfunctions in PD.


Sign in / Sign up

Export Citation Format

Share Document