extractable iron
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 4)

H-INDEX

25
(FIVE YEARS 0)

Author(s):  
Daisy Yang ◽  
Aliaa I. Shallan ◽  
Michael C. Breadmore ◽  
Christopher Greet ◽  
Craig Priest

2020 ◽  
Vol 12 ◽  
pp. 91-103
Author(s):  
SH Kim ◽  
SU An ◽  
WC Lee ◽  
JS Lee ◽  
JH Hyun

We investigated the effects of Manila clam aquaculture on the rates and pathways of anaerobic organic carbon (OC) oxidation in highly bioturbated (HB) and poorly bioturbated (PB) sediment in Keunso Bay, Yellow Sea. Due to the labile organic matter supply via sediment reworking by Manila clams, the anaerobic OC oxidation rate in HB sediment (38.8 mmol m-2 d-1) was ~1.5 times higher than that in PB sediment (26.8 mmol m-2 d-1). Microbial Fe(III) reduction (FeR) dominated OC oxidation pathways in HB sediment, comprising 55 to 76% of anaerobic OC oxidation, whereas sulfate reduction (SR) was the dominant oxidation pathway in PB sediment, accounting for up to 92% of anaerobic OC oxidation. Despite higher anaerobic respiration rates at the HB site, concentrations of NH4+, PO43-, oxalate-extractable iron (Fe(II)(oxal)), and total reduced inorganic sulfur were 2 to 3 times lower in HB than in PB sediment. Conversely, the concentration of reactive Fe(III)(oxal) at the HB site (2243 mmol m-2) exceeded that at the PB site (1127 mmol m-2) by a factor of 2. These results indicate that bioturbation by Manila clams enhances the re-oxidation processes of reduced metabolites in the sediment, thereby prohibiting SR and promoting FeR. Overall, the results suggest that aquaculture activities of Manila clams shift the dominant OC oxidation pathways in sediment from SR to FeR, which generates relatively oxidized and less sulfidic environments.


2020 ◽  
Author(s):  
Anders Bjørn Møller ◽  
Goswin Johann Hechrath ◽  
Cecilie Hermansen ◽  
Trine Nørgaard ◽  
Maria Knadel ◽  
...  

<p>Phosphorus (P) is one of the most important plant nutrients, and farmers regularly apply P as mineral fertilizer and with animal manures. Typically, reactions with amorphous aluminum and iron oxides or carbonates retain P in the soil. However, if P additions exceed the soil’s ability to bind them, P may leach from soil to surface waters, where it causes eutrophication. The phosphorus sorption capacity (PSC) is thus an inherent soil property that, when related to bound P, can describe the P saturation of the soil. Detailed knowledge of the spatial distribution of the PSC is therefore important information for assessing the risk of P leaching from agricultural land.</p><p>In weakly acidic soils predominant in Denmark, the PSC depends mainly on the oxalate-extractable contents of aluminum and iron. In this study, we aimed to map PSC in four depth intervals (0 – 25; 25 – 50; 50 – 75; 75 – 100 cm) for Denmark using measurements of oxalate-extractable aluminum and iron from 1,623 locations.</p><p>We mapped both elements using quantile regression forests. Predictions of oxalate-extractable aluminum had a weighted RMSE of 13.9 mmol kg<sup>-1</sup>. For oxalate-extractable iron, weighted RMSE was 33.5 mmol kg<sup>-1</sup>.</p><p>We included depth as a covariate and therefore trained one model for each element. For each element in each depth interval, we predicted the mean prediction value as well as 100 quantiles ranging from 0.5% to 99.5% in 1% intervals. The maps had a 30.4 m resolution. We then calculated PSC by convoluting the prediction quantiles of the two elements, using every combination of quantiles, in order to obtain the prediction uncertainty for PSC.</p><p>Oxalate-extractable aluminum was roughly normal distributed, while oxalate-extractable iron had a large positive skew. The age and origin of the parent material had a large effect on oxalate-extractable aluminum, and soil-forming processes such as weathering and podzolization had clear effects on the distribution in depth. Meanwhile, organic matter, texture and wetland processes were the main factors affecting oxalate-extractable iron, so much so that they obscured any trends with depth.</p><p>The weighted RMSE of the predicted PSC was 19.1 mmol kg<sup>-1</sup>. PSC was highest in wetland areas and lowest in young upland deposits, such as aeolian deposits and the loamy Weichselian moraines of eastern Denmark. The sandy glaciofluvial plains and Saalian moraines of western Denmark had intermediate PSC. In most cases, PSC was highest in the top soil, but in the sandy soils of western Denmark, PSC was highest in the depth interval 25 – 50 cm due to podzolization.</p>


2020 ◽  
Author(s):  
Alessandro Longhi ◽  
Mauro Guglielmin

<p>The deglaciation of the Italian Central Alps is still discussed and not well known, especially when we consider the Late Pleistocene-Early Holocene. This study will use different fraction of the iron content of paleo-spodosols to date the time of the deglaciation of three areas in the Central Italian Alps (Gavia, Stelvio and Val Viola). Relying on a first soil distribution analysis and on geomorphological evidences, we opened and described 24 soil pits and from each A and B horizon we collected at least 1 kg of sample to do some basic soil physical analysis: granulometry, water content, pH and loss on ignition. The oxalate extractable iron fraction and the dithionite extractable iron fraction have been determined with standard lab procedures, the total iron content has been determined using a SEM/EDX analysis. We calculated the Iron Crystallinity Ratio, defined as the difference between the dithionite extractable iron fraction and the oxalate extractable iron fraction, normalized on the total iron content. The Iron Crystallinity Ratio gives us a relative age of the soil formation: using data from radiocarbon dating and from cosmogenic dating, we calibrated the Iron Crystallinity Ratio with absolute ages. With the obtained functions, which showed a good fitting, we calculated ages between 15809 years and 5490 years in the Gavia area, between 11760 years and 7237 years in the Stelvio area and between 14668 years and 7096 years in the Val Viola area.</p>


2017 ◽  
Vol 81 (6) ◽  
pp. 1359-1370 ◽  
Author(s):  
Xiaolei Huang ◽  
Chenglong Feng ◽  
Guanglei Zhao ◽  
Mi Ding ◽  
Wenjing Kang ◽  
...  

Soil Research ◽  
2016 ◽  
Vol 54 (8) ◽  
pp. 926
Author(s):  
T. S. Taylor ◽  
J. C. Hughes ◽  
L. W. Titshall

Despite intensive commercial agriculture in the rift zone of Tanzania, mineralogical studies on the soils influenced by volcanic parent materials are scarce. A mineralogical investigation of the soils and two buried ash layers from an irrigated sugar estate was undertaken using X-ray diffraction, transmission electron microscopy and measurements of extractable iron, aluminium and silicon and the specific surface area (SSA) of the clay fraction. The dominant mineral in the sand and silt fractions was sanidine. The clay fractions contained mainly high-defect kaolin, illite and K-feldspar, with small amounts of calcite, talc and gibbsite in some samples. Electron microscopy revealed the presence of tubular and spheroidal halloysite and <0.5µm kaolinite crystals, as well as nanocrystalline material, probably allophane, and volcanic glass. The amounts of ferrihydrite (0.34–1.84%) and allophane (0.52–6.84%) were low in the soils but higher in the buried ash layers. The surface areas of the clay fractions were high (up to 145m2g–1) and it was calculated that 5% allophane constituted 22% of the total SSA. Although all soils were dominated by halloysite and small kaolinite particles, it is likely that the small amounts of allophane with high SSA has a strong effect on their physical and chemical properties.


CATENA ◽  
2015 ◽  
Vol 127 ◽  
pp. 32-45 ◽  
Author(s):  
Cianna E. Wyshnytzky ◽  
William B. Ouimet ◽  
James McCarthy ◽  
David P. Dethier ◽  
Ralph R. Shroba ◽  
...  

2015 ◽  
Vol 05 (11) ◽  
pp. 266-275 ◽  
Author(s):  
Olayinka Olakunle Olatunji ◽  
Yetunde Oyeyiola ◽  
Gbade Oyewunmi Oyediran

Sign in / Sign up

Export Citation Format

Share Document