refrigeration machine
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 48)

H-INDEX

11
(FIVE YEARS 1)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 498
Author(s):  
Anis Idir ◽  
Maxime Perier-Muzet ◽  
David Aymé-Perrot ◽  
Driss Stitou

In the present study, the evaluation of potential improvement of the overall efficiency of a common PV panel, valorizing the heat extracted by a heat exchanger that is integrated on its back side, either into work using an endoreversible Carnot engine or into cold by using an endoreversible tri-thermal machine consisting of a heat-driven refrigeration machine operating between three temperature sources and sink (such as a liquid/gas absorption machine), was carried out. A simplified thermodynamic analysis of the PV/thermal collector shows that there are two optimal operating temperatures and of the panels, which maximize either the thermal exergy or the overall exergy of the PV panel, respectively. The cold produced by the endoreversible tri-thermal machine during the operating conditions of the PV/thermal collector at is higher with a coefficient of performance (COP) of 0.24 thanks to the higher heat recovery potential. In the case of using the cold produced by a tri-thermal machine to actively cool of an additional PV panel in order to increase its electrical performances, the operating conditions at the optimal temperature provide a larger and more stable gain: the gain is about 12.2% compared with the conventional PV panel when the operating temperature of the second cooled panel varies from 15 to 35 °C.


Author(s):  
Wibowo Kusbandono ◽  

The purpose of this research is (a) to design and assemble a steam compression cycle cooling machine using the main components on the market (b) to obtain the characteristics of the cooling engine, which includes the Coefficient of Performance (COP) and the efficiency of the cooling engine. The research was conducted experimentally in the laboratory. The refrigeration machine works by using a steam compression cycle, with the main components: a compressor, an evaporator, a capillary tube and a condenser. The compressor power is 1/6 PK, while the other main components are adjusted to the size of the compressor power. The refrigerant used is R134a. Variations of the research were carried out on the condition of the refrigerant pipe located between the compressor and condenser: (a) without being submerged in water (b) submerged in 0.50 liters of water and (c) submerged in 0.75 liters of water. The results of the study provide information that the water immersion in the refrigerant pipe which is located between the compressor and condenser affects the COP value and the efficiency of the refrigeration machine. Consecutively (1) without being submerged in water, the COP value is 2.45 and the efficiency is 0.64 (2) submerged in liter of water, the COP value is 2.41 and the efficiency is 0.62 (3) submerged in liter of water, the value COP is 2.34 and efficiency is 0.60.


2021 ◽  
Vol 5 (2) ◽  
pp. 45-51
Author(s):  
Johan Eko Prasetyo ◽  
Jamaaluddin Jamaaluddin

A good work environment will affect the level of productivity of workers in a company. The operation of the refrigeration machine in the cocoa powder grinding area is very important in production. The indicators for the operation of the cooling machine are dust density, ambient temperature and wind speed. With control on the indicator will increase efficiency. In this study, the indicator is controlled with a GP2Y1010AUF0F dust sensor, a DHT22 temperature sensor, a DS18B20 sensor, and a wind speed sensor as sensor inputs. Furthermore, the sensor will be processed by the Node M CU ESP826 module. System output will be displayed on LED and android. The results of this study indicate the accuracy of the dust sensor is 96.12%, the DHT22 temperature sensor is 99.80%, the DS18B20 temperature sensor is 99.57% and the speed sensor is 95.89%. In this prototype, we can monitor the temperature of the air velocity of dust particles in the engine and the temperature of the engine cooler together and closely monitored.


Author(s):  
Дмитро Вікторович Коновалов ◽  
Роман Миколайович Радченко ◽  
Сергій Георгійович Фордуй ◽  
Фелікс Володимирович Царан ◽  
Віктор Павлович Халдобін ◽  
...  

One of the current directions of development of modern energy-saving and energy-efficient technologies for ship and stationery (including municipal) energy is the use of ejector refrigeration machines, which can be used for air conditioning systems together with an absorption refrigeration machine (cascade cycle) or vapor compressor refrigeration machine as part of cogeneration or trigeneration units. Such circuit solutions can be used together with ensuring the rational organization of work processes in the main elements of the refrigeration machine, in particular in the jet device - ejector, the appropriate design of which, in turn, will further increase the thermal coefficient. Improving the design of the ejector is a rather complex and long process and does not always give positive results. It is primarily because many tests are required on full-scale models. Therefore, computer simulation of the ejector operation at different variable input parameters, considering the geometric characteristics of the flow part and variable mode characteristics during operation is more attractive in terms of finding options for rational (optimal) design. The paper presents the results of software development for modeling hydrodynamic processes in the flowing part of the ejector, considering the variable operating modes of the ejector refrigeration machine. The existing method for calculating the pressure and circulation characteristics of jet devices is used. The developed software complex "RefJet" in the design mode defines the maximum achievable coefficients of ejection of a jet ejector. In the simulation mode - provides determination of the ejection coefficients of the already designed (certain sizes) ejector at variable values of pressure at the inlet and outlet in specific operating conditions, considering its operation at the limit and partial modes. The work of the software package was tested in the development and analysis of circuit solutions of ejector refrigeration machines as part of the heat recovery circuits of three-generation units based on internal combustion engines and gas turbine engines.


Author(s):  
A. P. Tsoy ◽  
A. S. Granovskiy ◽  
R. A. Jamasheva

To reduce the condensation pressure of the refrigerant in the summer, refrigeration system has been developed, in which, during periods of high air temperature, the heat of condensation is removed to the coolant, which was pre-cooled at night due to radiative cooling. A methodology has been developed for determining the main characteristics of the elements of the proposed system and calculating its daily energy consumption. The calculation shows that the proposed system with a nominal refrigerating capacity of 10 kW, using the R404a refrigerant, allows in the climate of the city of Shymkent to reduce the condensation temperature to +32.9°C, and daily energy consumption by 6.5% compared to an ordinary vapor compression refrigeration machine.


Author(s):  
Tamaz Isakadze ◽  
◽  
Givi Gugulashvili ◽  

The disadvantage of the technological process of freezing food products using carbon dioxide is the irrational use of its waste vapors. From the authors’ point of view, it is desirable to use carbon dioxide not only directly on the line for freezing and cooling food raw materials. Cooling of carbon dioxide vapors after processing on freezing lines with further use for refrigeration looks promising, for example, for freezing food materials, for which the freezing temperature according to the technological instructions can be higher than the boiling point of carbon dioxide -78 ℃. An innovative refrigeration machine based on a Ranque-Hilsch vortex tube has been developed for cooling waste carbon dioxide for further use in the refrigeration processing of food products. It is based on carbon dioxide recovery technology.


Author(s):  
G.K. Lavrenchenko ◽  
B.H. Hrudka

Carbon dioxide is used in large volumes to produce urea, a highly efficient nitrogen fertilizer. It is compressed in a multistage compressor to a pressure of 15 MPa and fed to the urea synthesis unit. The specific energy consumption for the compression of carbon dioxide by a compressor reaches 0.16 kWh/kg. It may be more profitable to use in the system of compressor-pumping and refrigeration units. They can be used to liquefy carbon dioxide and compress it to pressure 15 MPa before feeding it to the synthesis of urea. In the simplest scheme, an ammonia compression refrigeration machine (ACRM) is included in the system to improve efficiency. The specific energy consumption in such a system for the liquefaction and compression of CO2 is 0.118 kWh/kg. In case of replacement of the ACRM with an absorption refrigeration machine, unit costs can be reduced to 0.09 kWh/kg. These two systems can be used to increase urea production or to ensure stable operation of the units during the summer period of their operation. The analysis showed that further improvement of the technological scheme of the entire system will completely abandon the use of the compressor method of compression of CO2 to pressure 15 MPa before its supply to the urea synthesis unit. To do this, you need to include an additional absorption lithium bromide refrigeration machine in the system. In this scheme, the compressor-pumping unit will provide the simultaneous supply of liquid carbon dioxide and ammonia for the synthesis of urea with a pressure of 15 MPa. To increase the daily production of urea from 1400 to 2000 tons, it is necessary to increase the feed liquid CO2 in the amount of 62 t/hour and liquid NH3 — 47.5 t/hour. Bibl. 14, Fig. 3.


2021 ◽  
Vol 39 (4) ◽  
pp. 1280-1286
Author(s):  
Ghrici Adenane ◽  
Benramdane Mohammed ◽  
Ghernaout Mea

Renewable energies including solar energy requirements for refrigeration and air conditioning are increasingly gaining interest due to the refrigerants friendly to the environment. However, it was found that these technologies have some limitations like the low performance and their high cost. This paper proposes a comparative study of a solar adsorption refrigeration machine. The study consists in determining the influence of thermodynamic parameters of operation on the performance of the system. This is based on a thermodynamic model using different types of adsorbent / adsorbate pairs. The main parameters considered in this study are: temperature of generation, evaporation, maximum heating temperature, condensation pressure as well as the type of the pair used: activated carbon / methanol and zeolite / water. Simulations for different thermodynamic parameters show that the COP is very sensitive to the generation and evaporation temperatures as well as the maximum heating temperature, on the other hand it was slightly influenced by the condensation pressure. The results obtained have shown that the AC / methanol pair is more profitable than the zeolite / water pair.


The performance of the refrigeration machine needs to be increased, which usually may be carried out by changing the unit or the properties of primary and additional working fluids. Currently, nanofluids or hybrid nanofluids possess obtained curiosity in various engineering areas scheduled to it has the superb thermophysical properties, which will be quickly applied in refrigeration equipment by various functions for overall performance improvement. This paper assesses and then summarizes the latest research carried out on the consumption of nanofluids in the refrigeration machine as the supplementary liquid is mentioned. At last, the difficulties and possibilities for upcoming study are determined, which will be beneficial for the beginners and then concerns in this discipline.


Sign in / Sign up

Export Citation Format

Share Document