axisymmetric shape
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 931 ◽  
Author(s):  
Alexander A. Doinikov ◽  
Gabriel Regnault ◽  
Cyril Mauger ◽  
Philippe Blanc-Benon ◽  
Claude Inserra

An analytical theory is developed that describes acoustic microstreaming produced by two interacting bubbles. The bubbles are assumed to undergo axisymmetric oscillation modes, which can include radial oscillations, translation and shape modes. Analytical solutions are derived in terms of complex amplitudes of oscillation modes, which means that the modal amplitudes are assumed to be known and serve as input data when the velocity field of acoustic microstreaming is calculated. No restrictions are imposed on the ratio of the bubble radii to the viscous penetration depth and the distance between the bubbles. The interaction between the bubbles is considered both when the linear velocity field is calculated and when the second-order velocity field of acoustic microstreaming is calculated. Capabilities of the analytical theory are illustrated by computational examples.


2021 ◽  
Vol 927 ◽  
Author(s):  
Hanliang Guo ◽  
Hai Zhu ◽  
Ruowen Liu ◽  
Marc Bonnet ◽  
Shravan Veerapaneni

Many biological microswimmers locomote by periodically beating the densely packed cilia on their cell surface in a wave-like fashion. While the swimming mechanisms of ciliated microswimmers have been extensively studied both from the analytical and the numerical point of view, optimisation of the ciliary motion of microswimmers has received limited attention, especially for non-spherical shapes. In this paper, using an envelope model for the microswimmer, we numerically optimise the ciliary motion of a ciliate with an arbitrary axisymmetric shape. Forward solutions are found using a fast boundary-integral method, and the efficiency sensitivities are derived using an adjoint-based method. Our results show that a prolate microswimmer with a $2\,{:}\,1$ aspect ratio shares similar optimal ciliary motion as the spherical microswimmer, yet the swimming efficiency can increase two-fold. More interestingly, the optimal ciliary motion of a concave microswimmer can be qualitatively different from that of the spherical microswimmer, and adding a constraint to the cilia length is found to improve, on average, the efficiency for such swimmers.


2021 ◽  
Author(s):  
Luigi Tagliavini ◽  
Andrea Botta ◽  
Luca Carbonari ◽  
Giuseppe Quaglia ◽  
Dario Gandini ◽  
...  

Abstract In this paper, a novel mobile platform for assistive robotics tasks is presented. The machine is designed for working in a home environment, un-structured and possibly occupied by people. To work in this space, the platform must be able to get rid of all the consequent difficulties: to overpass small objects as steps and carpets, to operate with an as-high-as-possible dynamics, to avoid moving obstacles, and to navigate autonomously to track persons for person monitoring purposes. The proposed platform is designed to have an omni-directional mobility that improves the manoeuvrability with respect to state-of-the-art differential drive robots. It also will have a non-axisymmetric shape to easily navigate narrow spaces, and real-time edge computing algorithms for navigation. This work shows the design paradigm adopted for the realization of a novel mobile robot, named Paquitop. For a robust output, the design process used a modular approach which disjointed the several sub-systems which compose the machine. After a brief analysis of the expected features, a set of basic requirements are drawn to guide the functional and executive design. The overall architecture of the platform is presented, together with some details on the mechanical and electrical systems.


Author(s):  
Emmanuel Siéfert ◽  
Mark Warner

Gaussian-curved shapes are obtained by inflating initially flat systems made of two superimposed strong and light thermoplastic impregnated fabric sheets heat-sealed together along a specific network of lines. The resulting inflated structures are light and very strong because they (largely) resist deformation by the intercession of stretch. Programmed patterns of channels vary either discretely through boundaries or continuously. The former give rise to faceted structures that are in effect non-isometric origami and that cannot unfold as in conventional folded structures since they present the localized angle deficit or surplus. Continuous variation of the channel direction in the form of spirals is examined, giving rise to curved shells. We solve the inverse problem consisting in finding a network of seam lines leading to a target axisymmetric shape on inflation. They too have strength from the metric changes that have been pneumatically driven, resistance to change being met with stretch and hence high forces like typical shells.


Author(s):  
M.A. Baburin ◽  
V.D. Baskakov ◽  
S.V. Eliseev ◽  
K.A. Karnaukhov ◽  
V.A. Tarasov

The main factors controlling the formation of the stern of explosively formed projectiles are investigated using numerical calculations in a three-dimensional formulation of a problem. To form folds in the stern, it is proposed to use thin-walled spherical segments with a peripheral thickness deviation in terms of decreasing or increasing with respect to the thickness in the central part. The configurations of explosively formed projectiles with inclined folds in the stern are shown, and it is proposed to describe the fold inclination by two angles of its position. The effect of folds in the stern on the change in aerodynamic coefficients for a wide range of angle of attack is numerically studied. The angular velocity of the axial rotation of explosively formed projectiles with inclined folds in the stern is estimated based on the Newton method and considering the angles of its position. The results obtained are of interest to specialists working in the field of physics of explosion and high-speed impact, as well as those dealing with aerodynamics of aircrafts, mainly of axisymmetric shape


Author(s):  
Juho Lee ◽  
Joosik Lee ◽  
Heon Joo Lee ◽  
YounKil Kang

Abstract In many types of spacecraft and missile systems, the vehicle’s skin cutting are carried out by using the mild-detonating fuse (MDF) or the flexible linear shaped charge (FLSC). MDF is a very thin metal tube that filled with explosive charges and has an axisymmetric shape. FLSC is an inverted chevron-shaped flexible tube that generates hypervelocity jet to penetrate or cut thick metal structures. In this study, the characteristics of MDF and FLSC for metal plate cutting are identified. First, the fracture mechanisms due to MDF and FLSC are numerically analyzed in 2-D plane strain using ANSYS AUTODYN, one of commercial hydrocodes. By using proposed numerical scheme, the effects of the cutting methods and the design parameters on cutting performance, fragmentation and backward shock waves are studied; the pros and cons of MDF and FLSC for metal plate cutting are clarified. The numerical method and the results of this study provide the guidelines to select metal plate cutting method and help to establish the design method for optimal metal plate cutting; the number of the expensive explosive experiments can be reduced.


2018 ◽  
Vol 27 (3) ◽  
pp. 038704 ◽  
Author(s):  
Yi-Heng Zhang ◽  
Zachary McDargh ◽  
Zhan-Chun Tu

2016 ◽  
Vol 142 (12) ◽  
pp. 04016094 ◽  
Author(s):  
Mija H. Hubler ◽  
Franz-Josef Ulm

Sign in / Sign up

Export Citation Format

Share Document