large magellanic cloud
Recently Published Documents


TOTAL DOCUMENTS

2053
(FIVE YEARS 207)

H-INDEX

93
(FIVE YEARS 11)

2022 ◽  
Vol 924 (2) ◽  
pp. 44
Author(s):  
Erin Aadland ◽  
Philip Massey ◽  
D. John Hillier ◽  
Nidia Morrell

Abstract We present a spectral analysis of four Large Magellanic Cloud (LMC) WC-type Wolf–Rayet (WR) stars (BAT99-8, BAT99-9, BAT99-11, and BAT99-52) to shed light on two evolutionary questions surrounding massive stars. The first is: are WO-type WR stars more oxygen enriched than WC-type stars, indicating further chemical evolution, or are the strong high-excitation oxygen lines in WO-type stars an indication of higher temperatures. This study will act as a baseline for answering the question of where WO-type stars fall in WR evolution. Each star’s spectrum, extending from 1100 to 25000 Å, was modeled using cmfgen to determine the star’s physical properties such as luminosity, mass-loss rate, and chemical abundances. The oxygen abundance is a key evolutionary diagnostic, and with higher resolution data and an improved stellar atmosphere code, we found the oxygen abundance to be up to a factor of 5 lower than that of previous studies. The second evolutionary question revolves around the formation of WR stars: do they evolve by themselves or is a close companion star necessary for their formation? Using our derived physical parameters, we compared our results to the Geneva single-star evolutionary models and the Binary Population and Spectral Synthesis (BPASS) binary evolutionary models. We found that both the Geneva solar-metallicity models and BPASS LMC-metallicity models are in agreement with the four WC-type stars, while the Geneva LMC-metallicity models are not. Therefore, these four WC4 stars could have been formed either via binary or single-star evolution.


2021 ◽  
Vol 924 (1) ◽  
pp. L2
Author(s):  
Mario Cadelano ◽  
Emanuele Dalessandro ◽  
Maurizio Salaris ◽  
Nate Bastian ◽  
Alessio Mucciarelli ◽  
...  

Abstract We present the result of a detailed analysis of Hubble Space Telescope UV and optical deep images of the massive and young (∼1.5 Gyr) stellar cluster NGC 1783 in the Large Magellanic Cloud. This system does not show evidence of multiple populations (MPs) along the red giant branch (RGB) stars. However, we find that the cluster main sequence (MS) shows evidence of a significant broadening (50% larger than what is expected from photometric errors) along with hints of possible bimodality in the MP sensitive (m F343N − m F438W, m F438W) color–magnitude diagram (CMD). Such an effect is observed in all color combinations including the m F343N filter, while it is not found in the optical CMDs. This observational evidence suggests we might have found light-element chemical abundance variations along the MS of NGC 1783, which represents the first detection of MPs in a system younger than 2 Gyr. A comparison with isochrones including MP-like abundances shows that the observed broadening is compatible with a N abundance enhancement of Δ([N/Fe]) ∼ 0.3. Our analysis also confirms previous results about the lack of MPs along the cluster RGB. However, we find that the apparent disagreement between the results found on the MS and the RGB is compatible with the mixing effects linked to the first dredge up. This study provides new key information about the MP phenomenon and suggests that star clusters form in a similar way at any cosmic age.


2021 ◽  
Vol 163 (1) ◽  
pp. 30
Author(s):  
Chuan-Jui Li ◽  
You-Hua Chu ◽  
Chen-Yu Chuang ◽  
Guan-Hong Li

Abstract The supernova remnant (SNR) B0532−67.5 in the Large Magellanic Cloud (LMC) was first diagnosed by its nonthermal radio emission, and its SNR nature was confirmed by the observation of diffuse X-ray emission; however, no optical SNR shell is detected. The OB association LH75, or NGC 2011, is projected within the boundary of this SNR. We have analyzed the massive star population in and around SNR B0532−67.5 using optical photometric data to construct color–magnitude diagrams, using stellar evolutionary tracks to estimate stellar masses, and using isochrones to assess the stellar ages. From these analyses, we find a 20–25 Myr population in LH75 and a younger population less than 10 Myr old to the southwest of LH75. The center of SNR B0532−67.5 is located closer to the core of LH75 than to the massive stars to its southwest. We conclude that the supernova progenitor was probably a member of LH75 with an initial mass of ∼15 M ⊙. The supernova exploded in an H i cavity excavated by the energy feedback of LH75. The low density of the ambient medium prohibits the formation of a visible nebular shell. Despite the low density in the ambient medium, physical properties of the hot gas within the SNR interior do not differ from SNRs with a visible shell by more than a factor of 2–3. The large-scale H i map shows that SNR B0532−67.5 is projected in a cavity that appears to be connected with the much larger cavity of the supergiant shell LMC-4.


2021 ◽  
Vol 163 (1) ◽  
pp. 18
Author(s):  
P. S. Ferguson ◽  
N. Shipp ◽  
A. Drlica-Wagner ◽  
T. S. Li ◽  
W. Cerny ◽  
...  

Abstract We perform a detailed photometric and astrometric analysis of stars in the Jet stream using data from the first data release of the DECam Local Volume Exploration Survey DR1 and Gaia EDR3. We discover that the stream extends over ∼ 29° on the sky (increasing the known length by 18°), which is comparable to the kinematically cold Phoenix, ATLAS, and GD-1 streams. Using blue horizontal branch stars, we resolve a distance gradient along the Jet stream of 0.2 kpc deg−1, with distances ranging from D ⊙ ∼ 27–34 kpc. We use natural splines to simultaneously fit the stream track, width, and intensity to quantitatively characterize density variations in the Jet stream, including a large gap, and identify substructure off the main track of the stream. Furthermore, we report the first measurement of the proper motion of the Jet stream and find that it is well aligned with the stream track, suggesting the stream has likely not been significantly perturbed perpendicular to the line of sight. Finally, we fit the stream with a dynamical model and find that it is on a retrograde orbit, and is well fit by a gravitational potential including the Milky Way and Large Magellanic Cloud. These results indicate the Jet stream is an excellent candidate for future studies with deeper photometry, astrometry, and spectroscopy to study the potential of the Milky Way and probe perturbations from baryonic and dark matter substructure.


Author(s):  
Nada El-Falou ◽  
Jeremy J Webb

Abstract The tidal tails of globular clusters have been shown to be sensitive to the external tidal field. We investigate how Galactic globular clusters with observed tails are affected by satellite dwarf galaxies by simulating tails in galaxy models with and without dwarf galaxies. The simulations indicate that tidal tails can be subdivided into into three categories based on how they are affected by dwarf galaxies: 1) dwarf galaxies perturb the progenitor cluster’s orbit (NGC 4590, Pal 1, Pal 5), 2) dwarf galaxies perturb the progenitor cluster’s orbit and individual tail stars (NGC 362, NGC 1851, NGC 4147, NGC 5466, NGC 7492, Pal 14, Pal 15), and 3) dwarf galaxies negligibly affect tidal tails (NGC 288, NGC 5139, NGC 5904, Eridanus). Perturbations to a cluster’s orbit occur when dwarf galaxies pass within its orbit, altering the size and shape of the orbital and tail path. Direct interactions between one or more dwarf galaxies and tail stars lead to kinks and spurs, however we find that features are more difficult to observe in projection. We further find that the tails of Pal 5 are shorter in the galaxy model with dwarf galaxies as it is closer to apocentre, which results in the tails being compressed. Additional simulations reveal that differences between tidal tails in the two galaxy models are primarily due to the Large Magellanic Cloud. Understanding how dwarf galaxies affect tidal tails allows for tails to be used to map the distribution of matter in dwarf galaxies and the Milky Way.


2021 ◽  
Vol 34 ◽  
pp. 70-73
Author(s):  
V. Yushchenko ◽  
V. Gopka ◽  
A.V. Yushchenko ◽  
A. Shavrina ◽  
Ya. Pavlenkо ◽  
...  

This paper presents a study of radioactive  actinium in the atmospheres of stars located in galaxies with different chemical evolution history – namely, Przybylski's Star (HD 101065) in the Milky Way and the red supergiant PMMR27 in the Small Magellanic Cloud; it also reports the findings of the previous research of the red supergiant RM 1-667 in the Large Magellanic Cloud and the red giant BL138 in the Fornax dwarf spheroidal galaxy. The actinium abundance is close to that of uranium in the atmospheres of certain stars in the Milky Way’s halo and in the atmosphere of Arcturus. The following actinium abundances have been obtained (in a scale of lg N(H) = 12): for the red supergiants PMMR27 and RM 1- 667 lg N(Ac) = -1.7 and lg N(Ac) = -1.3, respectively, and for the red giant BL138 lg N(Ac) = -1.6. The actinium abundance in the atmosphere of Przybylski's Star (HD 101065) is lg N(Ac) = `0.94±0.09, which is more than two orders of magnitude higher than those in the atmospheres of the other studied stars.


2021 ◽  
Vol 923 (1) ◽  
pp. 130
Author(s):  
Le Ngoc Tram ◽  
Thiem Hoang ◽  
Enrique Lopez-Rodriguez ◽  
Simon Coudé ◽  
Archana Soam ◽  
...  

Abstract Located in the Large Magellanic Cloud and mostly irradiated by the massive star cluster R136, 30 Doradus is an ideal target to test the leading theory of grain alignment and rotational disruption by RAdiative Torques (RATs). Here, we use publicly available polarized thermal dust emission observations of 30 Doradus at 89, 154, and 214 μm using SOFIA/HAWC+. We analyze the variation of the dust polarization degree (p) with the total emission intensity (I), the dust temperature (T d), and the gas column density (N H) constructed from Herschel data. The 30 Doradus complex is divided into two main regions relative to R136, namely North and South. In the North, we find that the polarization degree first decreases and then increases before decreasing again when the dust temperature increases toward the irradiating cluster R136. The first depolarization likely arises from the decrease in grain alignment efficiency toward the dense medium due to the attenuation of the interstellar radiation field and the increase in the gas density. The second trend (the increase of p with T d) is consistent with the RAT alignment theory. The final trend (the decrease of p with T d) is consistent with the RAT alignment theory only when the grain rotational disruption by RATs is taken into account. In the South, we find that the polarization degree is nearly independent of the dust temperature, while the grain alignment efficiency is higher around the peak of the gas column density and decreases toward the radiation source. The latter feature is also consistent with the prediction of rotational disruption by RATs.


2021 ◽  
Vol 922 (2) ◽  
pp. 206
Author(s):  
Takashi Shimonishi ◽  
Natsuko Izumi ◽  
Kenji Furuya ◽  
Chikako Yasui

Abstract Interstellar chemistry in low-metallicity environments is crucial to understand chemical processes in the past metal-poor universe. Recent studies of interstellar molecules in nearby low-metallicity galaxies have suggested that metallicity has a significant effect on the chemistry of star-forming cores. Here we report the first detection of a hot molecular core in the extreme outer Galaxy, which is an excellent laboratory to study star formation and the interstellar medium in a Galactic low-metallicity environment. The target star-forming region, WB 89–789, is located at a galactocentric distance of 19 kpc. Our Atacama Large Millimeter/submillimeter Array observations in 241–246, 256–261, 337–341, and 349–353 GHz have detected a variety of carbon-, oxygen-, nitrogen-, sulfur-, and silicon-bearing species, including complex organic molecules (COMs) containing up to nine atoms, toward a warm (>100 K) and compact (<0.03 pc) region associated with a protostar (∼8 × 103 L ☉). Deuterated species such as HDO, HDCO, D2CO, and CH2DOH are also detected. A comparison of fractional abundances of COMs relative to CH3OH between the outer Galactic hot core and an inner Galactic counterpart shows a remarkable similarity. On the other hand, the molecular abundances in the present source do not resemble those of low-metallicity hot cores in the Large Magellanic Cloud. The results suggest that great molecular complexity exists even in the primordial environment of the extreme outer Galaxy. The detection of another embedded protostar associated with high-velocity SiO outflows is also reported.


2021 ◽  
Vol 923 (1) ◽  
pp. 38
Author(s):  
A. M. Nicuesa Guelbenzu ◽  
S. Klose ◽  
P. Schady ◽  
K. Belczynski ◽  
D. H. Hartmann ◽  
...  

Abstract Short-GRB progenitors could come in various flavors, depending on the nature of the merging compact stellar objects (including a stellar-mass black hole or not) or depending on their ages (millions or billions of years). At a redshift of z = 0.122, the nearly face-on spiral host of the short GRB 080905A is one of the closest short-GRB host galaxies identified so far. This made it a preferred target to explore spatially resolved star formation and to investigate the afterglow position in the context of its star formation structures. We used VLT/MUSE integral-field unit observations, supplemented by ATCA 5.5/9.0 GHz radio-continuum measurements and publicly available HST data, to study the star formation activity in the GRB 080905A host galaxy. The MUSE observations reveal that the entire host is characterized by strong line emission. Using the Hα line flux, we measure for the entire galaxy an SFR of about 1.6 M ⊙ yr−1, consistent with its non-detection by ATCA. Several individual star-forming regions are scattered across the host. The most luminous region has a Hα luminosity that is nearly four times as high as the luminosity of the Tarantula nebula in the Large Magellanic Cloud. Even though star-forming activity can be traced as close to about 3 kpc (in projection) distance to the GRB explosion site, stellar population synthesis calculations show that none of the Hα-bright star-forming regions is a likely birthplace of the short-GRB progenitor.


2021 ◽  
Vol 923 (2) ◽  
pp. 149
Author(s):  
Nora Shipp ◽  
Denis Erkal ◽  
Alex Drlica-Wagner ◽  
Ting S. Li ◽  
Andrew B. Pace ◽  
...  

Abstract Stellar streams are excellent probes of the underlying gravitational potential in which they evolve. In this work, we fit dynamical models to five streams in the Southern Galactic hemisphere, combining observations from the Southern Stellar Stream Spectroscopic Survey (S 5), Gaia EDR3, and the Dark Energy Survey, to measure the mass of the Large Magellanic Cloud (LMC). With an ensemble of streams, we find a mass of the LMC ranging from ∼14–19 × 1010 M ⊙, probed over a range of closest approach times and distances. With the most constraining stream (Orphan–Chenab), we measure an LMC mass of 18.8 − 4.0 + 3.5 × 10 10 M ⊙ , probed at a closest approach time of 310 Myr and a closest approach distance of 25.4 kpc. This mass is compatible with previous measurements, showing that a consistent picture is emerging of the LMC’s influence on structures in the Milky Way. Using this sample of streams, we find that the LMC’s effect depends on the relative orientation of the stream and LMC at their point of closest approach. To better understand this, we present a simple model based on the impulse approximation and we show that the LMC’s effect depends both on the magnitude of the velocity kick imparted to the stream and the direction of this kick.


Sign in / Sign up

Export Citation Format

Share Document