wave incidence
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jiexi Yin ◽  
Qi Wu ◽  
Haiming Wang ◽  
Zhining Chen

<p>A prephase synthesis method is proposed for sidelobe level (SLL) suppression of a 1-bit phase-only control metasurface under plane wave incidence. The array factor of the metasurface with N×N unit cells shows that controlling the number of prephases with varying values over the reflective surface realizes equivalent amplitude tailoring. Different from optimizing the prephase distribution, selection of the numbers of 0 and π/2 prephases in specific N regions is used to suppress the SLLs. Therefore, the parameters in the optimization can be dramatically reduced from N<sup>2</sup> to N. The prephase distribution is then designed based on the optimized number of prephases and a symmetric matrix for SLL suppression in the whole space. The SLLs are further suppressed by optimizing some of the unit cell states based on similar equivalent amplitude tailoring. Simulation and measurement of a set of 1-bit reflective metasurfaces with 20×20 unit cells verify that the phase-only control metasurface realizes SLL suppression to -13 dB for multiple beam directions from -30 to 30 degrees with a 10-degree step under normal plane wave incidence.</p>


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
D C Lo ◽  
D T Su ◽  
J T Lin

This study establishes a relationship diagram of the ship-wave interaction under a ship advancing in waves. A finite difference method based on volume of fluid (VOF) principles was used to simulate the hydrodynamic motions of a ship advancing in waves. A ship model was constructed using a computer aided design (CAD) tool. The computational fluid dynamic (CFD) technique was used to calculate the hydrodynamic motions effect of a ship sailing in waves at varying angles of incidence. This study investigates a number of significant related parameters, such as the speed of the ship model, the various wave incidence angles, the wave height, and the navigation time. A chart is also used to show the flow field, and changes in the six degrees of freedom motion and continually compare changes in the drag force.


2021 ◽  
Author(s):  
Jiexi Yin ◽  
Qi Wu ◽  
Haiming Wang ◽  
Zhining Chen

<p>A prephase synthesis method is proposed for sidelobe level (SLL) suppression of a 1-bit phase-only control metasurface under plane wave incidence. The array factor of the metasurface with N×N unit cells shows that controlling the number of prephases with varying values over the reflective surface realizes equivalent amplitude tailoring. Different from optimizing the prephase distribution, selection of the numbers of 0 and π/2 prephases in specific N regions is used to suppress the SLLs. Therefore, the parameters in the optimization can be dramatically reduced from N<sup>2</sup> to N. The prephase distribution is then designed based on the optimized number of prephases and a symmetric matrix for SLL suppression in the whole space. The SLLs are further suppressed by optimizing some of the unit cell states based on similar equivalent amplitude tailoring. Simulation and measurement of a set of 1-bit reflective metasurfaces with 20×20 unit cells verify that the phase-only control metasurface realizes SLL suppression to -13 dB for multiple beam directions from -30 to 30 degrees with a 10-degree step under normal plane wave incidence.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257982
Author(s):  
Naufal Shamilevich Zagidullin ◽  
Lukas J. Motloch ◽  
Timur Ilgamovich Musin ◽  
Zilya Adibovna Bagmanova ◽  
Irina Alexandrovna Lakman ◽  
...  

Background J-waves represent a common finding in routine ECGs (5–6%) and are closely linked to ventricular tachycardias. While arrhythmias and non-specific ECG alterations are a frequent finding in COVID-19, an analysis of J-wave incidence in acute COVID-19 is lacking. Methods A total of 386 patients consecutively, hospitalized due to acute COVID-19 pneumonia were included in this retrospective analysis. Admission ECGs were analyzed, screened for J-waves and correlated to clinical characteristics and 28-day mortality. Results J-waves were present in 12.2% of patients. Factors associated with the presence of J-waves were old age, female sex, a history of stroke and/or heart failure, high CRP levels as well as a high BMI. Mortality rates were significantly higher in patients with J-waves in the admission ECG compared to the non-J-wave cohort (J-wave: 14.9% vs. non-J-wave 3.8%, p = 0.001). After adjusting for confounders using a multivariable cox regression model, the incidence of J-waves was an independent predictor of mortality at 28-days (OR 2.76 95% CI: 1.15–6.63; p = 0.023). J-waves disappeared or declined in 36.4% of COVID-19 survivors with available ECGs for 6–8 months follow-up. Conclusion J-waves are frequently and often transiently found in the admission ECG of patients hospitalized with acute COVID-19. Furthermore, they seem to be an independent predictor of 28-day mortality.


2021 ◽  
Vol 60 (4) ◽  
pp. 294-319
Author(s):  
Joseline Mena-Negrete ◽  
Oscar C. Valdiviezo-Mijangos ◽  
Enrique Coconi-Morales ◽  
Rubén Nicolás-López

This work presents an approach to characterize the pore-structure and anisotropy in carbonate samples based on the Effective Medium Method (EMM). It considers a matrix with spheroidal inclusions which induce a transverse anisotropy. The compressional wave (VP), vertical (VSV)  and horizontal (VSH)  shear wave velocities are estimated taking into account parameters as characteristic length, frequency, angle of wave incidence, aspect ratio, mineralogy, and pore-filling fluid to predict pore shape in carbonates. Ranges of aspect ratios are shown to discriminate different pore types: intercrystalline, intergranular, moldic, and vuggy. The angle of wave incidence is a determinant parameter in the estimation of VP(0º, 45º, 90º), VSV(0º) and VSH(90º) to calculate dynamic anisotropic Young’s modulus (E33) and Poisson’s ratio (v31), as well as the Thomsen parameters, Epsilon, Gamma and Delta for quantification of the anisotropic pore-structure. The obtained results establish that the size, as well as the pore-structure, have a more significant impact on the elastic properties when the porosity takes values greater than 4% for the three frequencies, ultrasonic, sonic, and seismic. This investigation predicts the pore-structure and pore-size to improve characterization and elastic properties modeling of carbonate reservoirs. Validation of results includes porosity measurements and ultrasonic velocity data for different carbonate samples.


Author(s):  
Kai Wang ◽  
Yi Wang ◽  
Xin Song ◽  
Ping Tong ◽  
Qinya Liu ◽  
...  

ABSTRACT Teleseismic full-waveform inversion has recently been applied to image subwavelength-scale lithospheric structures (typically a few tens of kilometers) by utilizing hybrid methods in which an efficient solver for the 1D background model is coupled with a full numerical solver for a small 3D target region. Among these hybrid methods, the coupling of the frequency–wavenumber technique with the spectral element method is one of the most computationally efficient ones. However, it is normally based on a single plane-wave incidence, and thus cannot synthesize secondary global phases generated at interfaces outside the target area. To remedy the situation, we propose to use a multiple plane-wave injection method to include secondary global phases in the hybrid modeling. We investigate the performance of the teleseismic full-waveform inversion based on single and multiple plane-wave incidence through an application in the western Pyrenees and compare it with previously published images and the inversion based on a global hybrid method. In addition, we also test the influence of Earth’s spherical curvature on the tomographic results. Our results demonstrate that the teleseismic full-waveform inversion based on a single plane-wave incidence can reveal complex lithospheric structures similar to those imaged using a global hybrid method and is reliable for practical tomography for small regions with an aperture of a few hundred kilometers. However, neglecting the Earth’s spherical curvature and secondary phases leads to errors on the recovered amplitudes of velocity anomalies (e.g., about 2.8% difference for density and VS, and 4.2% for VP on average). These errors can be reduced by adopting a spherical mesh and injecting multiple plane waves in the frequency–wavenumber-based hybrid method. The proposed plane-wave teleseismic full-waveform inversion is promising for mapping subwavelength-scale seismic structures using high-frequency teleseismic body waves (&gt;1  Hz) including coda waves recorded at large N seismic arrays.


2021 ◽  
Author(s):  
Fuyuan Yu ◽  
Xiongjun Shang ◽  
Wei Fang ◽  
Qingqing Zhang ◽  
Yan Wu ◽  
...  

Abstract In this paper a simple and tunable reflective polarization converter has been investigated numerically based on metamaterial which composes of a two-corner-cut square patch resonator with a slit embedded into Vanadium dioxide film (VO2) and reflective ground layer. All the results obtained by the CST Microwave Studio show that the polarization conversion ratio (PCR) above 90% is achieved from 2.22-5.42THz at the temperature about 25°C under the linearly and circularly polarized wave incidence normally. In addition, the influences on electromagnetic polarization properties have been demonstrated with the insulator-to-metal phase transition of the Vanadium dioxide film (VO2) film by the method of varying the temperature. At the same time, to be demonstrated, the physical mechanism of changeable polarization conversion has been discussed by the distributions of current densities. According to the results, the designed metamaterial could be applied in the area of temperature-controlled sensing, THz wireless communication, tunable polarized devices.


2021 ◽  
Author(s):  
Carlos Eduardo Silva de Souza ◽  
Nuno Fonseca ◽  
Marit Irene Kvittem

Abstract Floating bridges are a promising solution for replacing ferries in the crossing of Norwegian fjords. Their design involves the adoption of accurate, but at the same time efficient models for the loads the structure is subjected to. Wave drift forces at the bridge’s pontoon may excite the bridge’s lower horizontal modes, with consequences to the loads on the bridge and mooring lines. Newman’s approximation is normally adopted to calculate the wave drift forces in such applications. A common simplification is to assume that the pontoons are fixed in the calculation of wave drift coefficients, while it is known that wave frequency motions may significantly influence drift loads. This paper evaluates the consequences of this simplification, in comparison to coefficients obtained considering the pontoons’ motions. First, the effect of the bridge deflection, due to mean drift, on the pontoon’s motions, is evaluated. It is found that this effect is negligible. Then, the RAOs are used in the calculation of wave drift coefficients, showing very different results than those obtained with fixed pontoons. Time-domain simulations are then performed with wave drift coefficients calculated with both approaches, with focus on the bridge girder moments and mooring line tensions. It is shown that using wave drift coefficients obtained with fixed pontoon is a non-conservative simplification, depending on sea state and wave incidence direction.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 752
Author(s):  
Henrik Mäntynen ◽  
Harri Lipsanen ◽  
Nicklas Anttu

Numerical optics modeling is an invaluable tool in the design of nanostructures for nanophotonics applications where diffraction effects often lead to complex dependency between the nanostructure geometry and its optical properties and response. In order to analyze, design, and optimize such nanostructures, computationally efficient numerical optics modeling methods are required. One way to improve the numerical performance is to exploit symmetries found in many optics problems. By identifying equivalencies and restrictions arising from symmetry, it can be possible to simplify the problem at hand, which is the essence of symmetry reduction. However, applying symmetry reduction in optics modeling problems is not trivial. To the best of our knowledge, symmetry reduction has so-far been applied in finite element method (FEM) optics models only in those specific cases where an incident plane wave shares symmetries with the nanostructure geometry. In this work, we show how to extend the symmetry reduction of FEM optics models to the case of nonsymmetric plane-wave incidence, demonstrate such reduction with numerical examples of incident plane wave absorption in a single nanowire and a periodic nanowire array, and discuss the achieved gains in computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document