space variant
Recently Published Documents


TOTAL DOCUMENTS

601
(FIVE YEARS 54)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Armen Der Kiureghian

Based on material taught at the University of California, Berkeley, this textbook offers a modern, rigorous and comprehensive treatment of the methods of structural and system reliability analysis. It covers the first- and second-order reliability methods for components and systems, simulation methods, time- and space-variant reliability, and Bayesian parameter estimation and reliability updating. It also presents more advanced, state-of-the-art topics such as finite-element reliability methods, stochastic structural dynamics, reliability-based optimal design, and Bayesian networks. A wealth of well-designed examples connect theory with practice, with simple examples demonstrating mathematical concepts and larger examples demonstrating their applications. End-of-chapter homework problems are included throughout. Including all necessary background material from probability theory, and accompanied online by a solutions manual and PowerPoint slides for instructors, this is the ideal text for senior undergraduate and graduate students taking courses on structural and system reliability in departments of civil, environmental and mechanical engineering.


2021 ◽  
Vol 127 (12) ◽  
Author(s):  
Milo W. Hyde

AbstractWe present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane $$z \ge 0$$ z ≥ 0 . To validate the theoretical work, we perform Monte Carlo simulations, in which we generate statistically independent ST NUC beam realizations and compare the sample statistical moments to the corresponding theory. We observe excellent agreement amongst the results.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 403
Author(s):  
Franco Gori ◽  
Massimo Santarsiero

The celebrated Gaussian Schell model source with its shift-invariant degree of coherence may be the basis for devising sources with space-variant properties in the spirit of structured coherence. Starting from superpositions of Gaussian Schell model sources, we present two classes of genuine cross-spectral densities whose degree of coherence varies across the source area. The first class is based on the use of the Laplace transform while the second deals with cross-spectral densities that are shape-invariant upon paraxial propagation. For the latter, we present a set of shape-invariant cross-spectral densities for which the modal expansion can be explicitly found. We finally solve the problem of ascertain whether an assigned cross-spectral density is shape-invariant by checking if it satisfies a simple differential constraint.


2021 ◽  
Vol vol. 23, no. 3 (Discrete Algorithms) ◽  
Author(s):  
Yoshiharu Kohayakawa ◽  
Flávio Keidi Miyazawa ◽  
Yoshiko Wakabayashi

In the $d$-dimensional hypercube bin packing problem, a given list of $d$-dimensional hypercubes must be packed into the smallest number of hypercube bins. Epstein and van Stee [SIAM J. Comput. 35 (2005)] showed that the asymptotic performance ratio $\rho$ of the online bounded space variant is $\Omega(\log d)$ and $O(d/\log d)$, and conjectured that it is $\Theta(\log d)$. We show that $\rho$ is in fact $\Theta(d/\log d)$, using probabilistic arguments.


2021 ◽  
Vol 13 (16) ◽  
pp. 3329
Author(s):  
Bowen Bie ◽  
Yinghui Quan ◽  
Kaijie Xu ◽  
Guangcai Sun ◽  
Mengdao Xing

This paper proposes an imaging algorithm for synthetic aperture radar (SAR) mounted on a high-speed maneuvering platform with squint terrain observation by progressive scan mode. To overcome the mismatch between range model and the signal after range walk correction, the range history is calculated in local polar format. The Doppler ambiguity is resolved by nonlinear derotation and zero-padding. The recovered signal is divided into several blocks in Doppler according to the angular division. Keystone transform is used to remove the space-variant range cell migration (RCM) components. Thus, the residual RCM terms can be compensated by a unified phase function. Frequency domain perturbation terms are introduced to correct the space-variant Doppler chirp rate term. The focusing parameters are calculated according to the scene center of each angular block and the signal of each block can be processed in parallel. The image of each block is focused in range-Doppler domain. After the geometric correction, the final focused image can be obtained by directly combined the images of all angular blocks. Simulated SAR data has verified the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document