minimum energy dissipation
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Mario Letelier ◽  
Dennis A. Siginer ◽  
Juan Sebastián Stockle Henríquez

Abstract The shape, size and location of the stagnation zone between flat non-parallel walls that make up the corner of a tube with non-circular cross-section through which a phase change material of the Bingham plastic type flows is investigated. We show that the stagnant area is bounded by a convex meniscus whose size depends on the degree of plasticity and the vertex angle. The maximum and minimum energy dissipation occurs at the wall and at the bisectrix, respectively. The stagnant zone can be altogether avoided by modifying the shape of the wall in the corner area. A new design of the cross-section of the tube that allows reducing or eliminating this area to optimize the mass transport is developed. Two optimal solutions a vertex with a straight cut and a concavely curved vertex are proposed.


2021 ◽  
Vol 11 (9) ◽  
pp. 3734
Author(s):  
Jian Dong ◽  
Youhai Guo ◽  
Long Jiao ◽  
Chao Si ◽  
Yinbo Bian ◽  
...  

The motion state of a droplet on an inclined, hydrophilic rough surface in gravity, pinned or sliding, is governed by the balance between the driving and the pinned forces. It can be judged by the droplet’s shape on the inclined hydrophilic rough surface and the droplet’s contact angle hysteresis. In this paper, we used the minimum energy theory, the minimum energy dissipation theory, and the nonlinear numerical optimization algorithm to establish Models 1–3 to calculate out the advancing/receding contact angles (θa/θr), the initial front/rear contact angles (θ1−0/θ2−0) and the dynamic front/rear contact angles (θ1−*/θ2−*) for a droplet on a rough surface. Also, we predicted the motion state of the droplet on an inclined hydrophilic rough surface in gravity by comparing θ1−0(θ2−0) and θ1−*(θ2−*) with θa(θr). Experiments were done to verify the predictions. They showed that the predictions were in good agreement with the experimental results. These models are promising as novel design approaches of hydrophilic functional rough surfaces, which are frequently applied to manipulate droplets in microfluidic chips.


2021 ◽  
Author(s):  
Fred Molz ◽  
Boris Faybishenko

AbstractPresented is a system of four ordinary differential equations and a mathematical analysis of microbiological experiments in a four-component chemostat—nutrient n, rods r, cocci c, and predators p. The analysis is consistent with the conclusion that previous experiments produced features of deterministic chaotic and classical dynamics depending on dilution rate. The surrogate model incorporates as much experimental detail as possible, but necessarily contains unmeasured parameters. The objective is to understand better the differences between model simulations and experimental results in complex microbial populations. The key methodology for simulation of chaotic dynamics, consistent with the measured dilution rate and microbial volume averages, was to cause the preference of p for r vs. c to vary with the r and c concentrations, to make r more competitive for nutrient than c, and to recycle some dying p biomass, leading to a modified version of the Monod kinetics model. Our mathematical model demonstrated that the occurrence of chaotic dynamics requires a predator, p, preference for r versus c to increase significantly with increases in r and c populations. Also included is a discussion of several generalizations of the existing model and a possible involvement of the minimum energy dissipation principle. This principle appears fundamental to thermodynamic systems including living systems. Several new experiments are suggested.


2021 ◽  
Vol 183 (1) ◽  
Author(s):  
Gregory W. Wimsatt ◽  
Alexander B. Boyd ◽  
Paul M. Riechers ◽  
James P. Crutchfield

AbstractNonequilibrium information thermodynamics determines the minimum energy dissipation to reliably erase memory under time-symmetric control protocols. We demonstrate that its bounds are tight and so show that the costs overwhelm those implied by Landauer’s energy bound on information erasure. Moreover, in the limit of perfect computation, the costs diverge. The conclusion is that time-asymmetric protocols should be developed for efficient, accurate thermodynamic computing. And, that Landauer’s Stack—the full suite of theoretically-predicted thermodynamic costs—is ready for experimental test and calibration.


Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 181-195 ◽  
Author(s):  
Víctor-Manuel Soto-Francés ◽  
José-Manuel Pinazo-Ojer ◽  
Emilio-José Sarabia-Escrivá ◽  
Pedro-Juan Martínez-Beltrán

Sign in / Sign up

Export Citation Format

Share Document