potential oxygen
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Canan Gulmez ◽  
Cevahir Altınkaynak ◽  
Merve Turk ◽  
Nalan Ozdemir ◽  
Onur Atakisi

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1958
Author(s):  
Clara Coll-Satue ◽  
Michelle Maria Theresia Jansman ◽  
Peter Waaben Thulstrup ◽  
Leticia Hosta-Rigau

Hemoglobin (Hb)-based oxygen carriers (HBOCs) display the excellent oxygen-carrying properties of red blood cells, while overcoming some of the limitations of donor blood. Various encapsulation platforms have been explored to prepare HBOCs which aim to avoid or minimize the adverse effects caused by the administration of free Hb. Herein, we entrapped Hb within a poly(lactide-co-glycolide) (PLGA) core, prepared by the double emulsion solvent evaporation method. We study the effect of the concentrations of Hb, PLGA, and emulsifier on the size, polydispersity (PDI), loading capacity (LC), and entrapment efficiency (EE) of the resulting Hb-loaded PLGA nanoparticles (HbNPs). Next, the ability of the HbNPs to reversibly bind and release oxygen was thoroughly evaluated. When needed, trehalose, a well-known protein stabilizer that has never been explored for the fabrication of HBOCs, was incorporated to preserve Hb’s functionality. The optimized formulation had a size of 344 nm, a PDI of 0.172, a LC of 26.9%, and an EE of 40.7%. The HbNPs were imaged by microscopy and were further characterized by FTIR and CD spectroscopy to assess their chemical composition and structure. Finally, the ability of the encapsulated Hb to bind and release oxygen over several rounds was demonstrated, showing the preservation of its functionality.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11836
Author(s):  
Fumiaki Mori ◽  
Yu Umezawa ◽  
Ryuji Kondo ◽  
Gregory N. Nishihara ◽  
Minoru Wada

The dynamics of potential oxygen consumption at the sediment surface in a seasonally hypoxic bay were monitored monthly by applying a tetrazolium dye (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride [INT]) reduction assay to intact sediment core samples for two consecutive years (2012–2013). Based on the empirically determined correlation between INT reduction (INT-formazan formation) and actual oxygen consumption of sediment samples, we inferred the relative contribution of biological and non-biological (chemical) processes to the potential whole oxygen consumption in the collected sediment samples. It was demonstrated that both potentials consistently increased and reached a maximum during summer hypoxia in each year. For samples collected in 2012, amplicon sequence variants (ASVs) of the bacterial 16S rRNA genes derived from the sediment surface revealed a sharp increase in the relative abundance of sulfate reducing bacteria toward hypoxia. In addition, a notable shift in other bacterial compositions was observed before and after the INT assay incubation. It was Arcobacter (Arcobacteraceae, Campylobacteria), a putative sulfur-oxidizing bacterial genus, that increased markedly during the assay period in the summer samples. These findings have implications not only for members of Delta- and Gammaproteobacteria that are consistently responsible for the consumption of dissolved oxygen (DO) year-round in the sediment, but also for those that might grow rapidly in response to episodic DO supply on the sediment surface during midst of seasonal hypoxia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Wang ◽  
Yan Gao ◽  
Yanting Tang ◽  
Xiaoting Zhou ◽  
Yuezheng Lai ◽  
...  

AbstractCytochromes bd are ubiquitous amongst prokaryotes including many human-pathogenic bacteria. Such complexes are targets for the development of antimicrobial drugs. However, an understanding of the relationship between the structure and functional mechanisms of these oxidases is incomplete. Here, we have determined the 2.8 Å structure of Mycobacterium smegmatis cytochrome bd by single-particle cryo-electron microscopy. This bd oxidase consists of two subunits CydA and CydB, that adopt a pseudo two-fold symmetrical arrangement. The structural topology of its Q-loop domain, whose function is to bind the substrate, quinol, is significantly different compared to the C-terminal region reported for cytochromes bd from Geobacillus thermodenitrificans (G. th) and Escherichia coli (E. coli). In addition, we have identified two potential oxygen access channels in the structure and shown that similar tunnels also exist in G. th and E. coli cytochromes bd. This study provides insights to develop a framework for the rational design of antituberculosis compounds that block the oxygen access channels of this oxidase.


2021 ◽  
Author(s):  
Fumiaki Mori ◽  
Yu Umezawa ◽  
Ruji Kondo ◽  
Gregory N. Nishihara ◽  
Minoru Wada

Abstract The dynamics of potential oxygen consumption at the sediment surface in a seasonally hypoxic bay were monitored monthly by applying a tetrazolium dye (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride [INT]) reduction assay to intact sediment core samples for two consecutive years (2012–2013). Based on the empirically determined correlation between INT reduction (INT-formazan formation) and actual oxygen consumption of sediment samples, we inferred the relative contribution of biological and non-biological (chemical) processes to the potential whole oxygen consumption in the collected sediment samples. It was demonstrated that both potentials consistently increased and reached a maximum during summer hypoxia in each year. For samples collected in 2012, amplicon sequence variants (ASVs) of the bacterial 16S rRNA genes derived from the sediment surface revealed a notable shift in the bacterial community composition before and after the INT assay incubation. Within the bacterial community that was predominated by the ASVs closely related to Woeseia (Woeseiaceae, Gammaproteobacteria), the relative abundance of ASVs affiliated with Arcobacter (Arcobacteraceae, Campylobacteria), a putative sulfur-oxidizing bacterial genus, increased markedly in the summer samples. These findings have implications not only for the group of bacteria that are consistently responsible for the consumption of dissolved oxygen (DO) year-round in the sediment, but also for those that might grow rapidly in response to episodic DO supply on the sediment surface during midst of seasonal hypoxia.


2021 ◽  
Vol 13 (5) ◽  
pp. 5945-5954
Author(s):  
Annie Y. Heble ◽  
Julien Santelli ◽  
Amanda M. Armstrong ◽  
Robert F. Mattrey ◽  
Jacques Lux

2021 ◽  
Vol 57 (14) ◽  
pp. 1774-1777
Author(s):  
Wenjuan Li ◽  
Qi Shen ◽  
Dandan Men ◽  
Yujie Sun ◽  
Wenwen Cao ◽  
...  

Nitrogen-doped carbon functional CoSe2 nanowires (CoSe2@N–C NWs), which act as potential oxygen evolution reaction (OER) catalysts with large current density and high stability, have been reported.


Sign in / Sign up

Export Citation Format

Share Document