synovial fluid cells
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 4)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Hilde Brouwers ◽  
Johannes Hendrick von Hegedus ◽  
Enrike van der Linden ◽  
Rachid Mahdad ◽  
Margreet Kloppenburg ◽  
...  

Abstract Background Synovial fluid (SF) is commonly used for diagnostic and research purposes, as it is believed to reflect the local inflammatory environment. Owing to its complex composition and especially the presence of hyaluronic acid, SF is usually viscous and non-homogeneous. In this study, we investigated the importance of homogenization of the total SF sample before subsequent analysis. Methods SF was obtained from the knee of 29 arthritis patients (26 rheumatoid arthritis, 2 osteoarthritis, and 1 juvenile idiopathic arthritis patient) as part of standard clinical care. Synovial fluid was either treated with hyaluronidase as a whole or after aliquoting to determine whether the concentration of soluble mediators is evenly distributed in the viscous synovial fluid. Cytokine and IgG levels were measured by ELISA or Luminex and a total of seven fatty acid and oxylipin levels were determined using LC-MS/MS in all aliquots. For cell analysis, synovial fluid was first centrifuged and the pellet was separated from the fluid. The fluid was subsequently treated with hyaluronidase and centrifuged to isolate remaining cells. Cell numbers and phenotype were determined using flow cytometry. Results In all patients, there was less variation in IgG, 17-HDHA, leukotriene B4 (LTB4), and prostaglandin E2 (PGE2) levels when homogenization was performed before aliquoting the SF sample. There was no difference in variation for cytokines, 15-HETE, and fatty acids arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Between 0.8 and 70% of immune cells (median 5%) remained in suspension and were missing in subsequent analyses when the cells were isolated from untreated SF. This percentage was higher for T and B cells: 7–85% (median 22%) and 7–88% (median 23 %), respectively. Conclusions Homogenization of the entire SF sample leads to less variability in IgG and oxylipin levels and prevents erroneous conclusions based on incomplete isolation of synovial fluid cells.


2019 ◽  
Vol 80 (7) ◽  
pp. 646-656
Author(s):  
Thaís S. L. Machado ◽  
Cristina O. Massoco ◽  
Luis Cláudio L. C. Silva ◽  
Joice Fülber ◽  
Juliana J. Moreira ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Eduardo Branco de Sousa ◽  
Gilson Costa dos Santos Junior ◽  
Ramon Pinheiro Aguiar ◽  
Rafaela da Costa Sartore ◽  
Ana Carolina Leal de Oliveira ◽  
...  

Synovial fluid holds a population of mesenchymal stem cells (MSC) that could be used for clinical treatment. Our goal was to characterize the inflammatory and metabolomic profile of the synovial fluid from osteoarthritic patients and to identify its modulatory effect on synovial fluid cells. Synovial fluid was collected from non-OA and OA patients, which was centrifuged to isolate cells. Cells were cultured for 21 days, characterized with specific markers for MSC, and exposed to a specific cocktail to induce chondrogenic, osteogenic, and adipogenic differentiation. Then, we performed a MTT assay exposing SF cells from non-OA and OA patients to a medium containing non-OA and OA synovial fluid. Synovial fluid from non-OA and OA patients was submitted to ELISA to evaluate BMP-2, BMP-4, IL-6, IL-10, TNF-α, and TGF-β1 concentrations and to a metabolomic evaluation using1H-NMR. Synovial fluid cells presented spindle-shaped morphologyin vitro. Samples from OA patients formed a higher number of colonies than the ones from non-OA patients. After 21 days, the colony-forming cells from OA patients differentiated into the three mesenchymal cell lineages, under the appropriated induction protocols. Synovial fluid cells increased its metabolic activity after being exposed to the OA synovial fluid. ELISA assay showed that OA synovial fluid samples presented higher concentration of IL-10 and TGF-β1 than the non-OA, while the NMR showed that OA synovial fluid presents higher concentrations of glucose and glycerol. In conclusion, SFC activity is modulated by OA synovial fluid, which presents higher concentration of IL-10, TGF-β, glycerol, and glucose.


2018 ◽  
Vol 26 ◽  
pp. S128-S129
Author(s):  
J.K. Garcia ◽  
C. Mennan ◽  
S. Roberts ◽  
J. Richardson ◽  
P. Gallagher ◽  
...  

2017 ◽  
Vol 214 (11) ◽  
pp. 3219-3238 ◽  
Author(s):  
Hua Jiang ◽  
Hongbin He ◽  
Yun Chen ◽  
Wei Huang ◽  
Jinbo Cheng ◽  
...  

The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human diseases. A few compounds have been developed to inhibit NLRP3 inflammasome activation, but compounds directly and specifically targeting NLRP3 are still not available, so it is unclear whether NLRP3 itself can be targeted to prevent or treat diseases. Here we show that the compound CY-09 specifically blocks NLRP3 inflammasome activation. CY-09 directly binds to the ATP-binding motif of NLRP3 NACHT domain and inhibits NLRP3 ATPase activity, resulting in the suppression of NLRP3 inflammasome assembly and activation. Importantly, treatment with CY-09 shows remarkable therapeutic effects on mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2 diabetes. Furthermore, CY-09 is active ex vivo for monocytes from healthy individuals or synovial fluid cells from patients with gout. Thus, our results provide a selective and direct small-molecule inhibitor for NLRP3 and indicate that NLRP3 can be targeted in vivo to combat NLRP3-driven diseases.


2014 ◽  
Vol 42 (1) ◽  
pp. 21
Author(s):  
AmalA Abd-El-Hafez ◽  
Mervat Esmail ◽  
Ali El-Deeb ◽  
Rehab Al Sernagawy

2012 ◽  
Vol 32 (12) ◽  
pp. 1355-1360 ◽  
Author(s):  
Patrícia M. Brossi ◽  
Raquel Y.A. Baccarin ◽  
Cristina O. Massoco

Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)¹ - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.


Sign in / Sign up

Export Citation Format

Share Document