dsdp site
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 23)

H-INDEX

35
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Bella Duncan

<p>During the Cenozoic Era (the last 65 Ma), Antarctica’s climate has evolved from ice free conditions of the ‘Greenhouse world’, which at its peak (~ 55 Ma) supported near-tropical forests, to the ‘Icehouse’ climate of today with permanent ice sheets, and a very sparse macroflora. This long-term cooling trend is punctuated by a number of major, abrupt, and in some cases, irreversible climate transitions. Reconstructing past changes in vegetation, sea surface temperature, hydroclimate and the carbon cycle require robust geological proxies that in turn can provide insights into climatic thresholds and feedbacks that drove major transitions in the evolution of Antarctica’s ice sheets. Biomarkers allow climate and environmental proxy reconstructions for this region, where other more traditional paleoclimate methods are less suitable. This study has two aims. Firstly to assess the suitability and applicability of biomarkers in Antarctic sediments across a range of depositional settings and ages, and secondly to apply biomarker-based climate proxies to reconstruct environmental and climate conditions during key periods in the development of the Antarctic Ice Sheets.  The distribution and abundances of n-alkanes are assessed in Oligocene and Miocene sediments from a terrestrial outcrop locality in the Transantarctic Mountains, and two glaciomarine sediment cores and an ice-distal deep marine core from the western Ross Sea. Comparisons are made with n-alkane distributions in Eocene glacial erratics and sedimentary rocks of the Mesozoic Beacon Supergroup, both likely sources of reworked material. A shift in dominant chain length from n-C₂₉ to n-C₂₇ occurs between the Late Eocene and Early Oligocene, considered a response to a significant climate cooling. Samples from glaciofluvial environments onshore, and subglacial and ice-proximal environments offshore display a reworked n-alkane distribution, characterised by low carbon preference index (CPI), high average chain length (ACL) and high n-C₂₉/n-C₂₇ values. Whereas, samples from lower-energy, more benign lacustrine and ice-distal marine environments predominantly contained contemporary material.  Palynomorphs and biomarker proxies based on n-alkanes and glycerol dialkyl glycerol tetraethers (GDGTs) are applied to a Late Oligocene and Early Miocene glaciomarine succession spanning the large transient excursion of the Mi-1 glaciation (~23 Ma) in DSDP Site 270 drill core from the central Ross Sea. While the Late Oligocene is marked by relatively warm conditions, regional cooling initiated a transition into Mi-1. This was likely driven by a combination of decreasing atmospheric CO₂ and an orbital geometry favouring low seasonality and cool summers, leading to an intensification of proto-Antarctic bottom water production as the Ross Sea deepened and cooled. Mi-1 manifests as a regionally cool period, with minimum subsurface temperatures of ~4°C and onshore mean summer temperatures of ~8°C. A negative n-alkane δ¹³C excursion of up to 4.8‰ is interpreted as a vegetation response to cold, restricted growing seasons, with plants driven to lower altitudes and more stunted growth forms. However, ocean temperatures remained too warm for marine-based ice sheets to advance onto the outer continental shelf and over-ride the drill site. The large increase in ice volume associated with this event, implied by global δ¹⁸O records, was probably held on a higher, terrestrial West Antarctica of greater extent than present day. The relative lack of ice rafted debris during Mi-1, suggests the presence of a marginal marine-terminating ice sheet with fringing ice shelves to the south of DSDP site 270, calving icebergs lacking a basal debris layer, similar to those calving from the Ross Ice Shelf today. This extensive ice cover may explain a large decrease in marine n-alkanes at this time restricting marine productivity on the continental shelf. The biomarker data for the Early Miocene in DSDP 270 indicates a relative warming in both terrestrial and marine temperatures following the transient Mi-1 glacial expansion, but an overall baseline cooling of climate between Late Oligocene and the Early Miocene in the Ross Sea embayment.  Isoprenoid GDGTs are used to reconstruct a Cenozoic subsurface ocean temperature compilation for the Ross Sea, a key source region of ocean deep water. The ocean temperature TEXL86 calibration and BAYSPAR in standard subsurface mode were considered, through comparison with independent microfossil and sedimentological data, the most appropriate for use in this region. Ocean temperatures cool prior to the Eocene/Oligocene transition and remain cool for the rest of the Cenozoic, with the exception of short periods of relative warmth in the Late Oligocene and Mid-Miocene Climate Optimum, and long-term trends broadly mirror that of the foraminiferal δ¹⁸O record from the deep Pacific. The Δ Ring Index is used to assess non-thermal influences on GDGT distributions, and displays a long term shift from more positive to more negative deviations. This correlates with %GDGT-0, and also relates to a declining trend in the Methane Index, which reflect the contribution of methanogenic and methanotrophic archaea. These changes suggest that these archaea contributed more to the archaeal community in the early to mid Cenozoic, potentially indicating a more anoxic depositional environment in the Ross Sea. The Branched to Isoprenoid Tetraether index (BIT) steadily declines over the Cenozoic, reflecting increasingly hyper-arid conditions onshore, with less active glaciofluvial systems, limited soil development and less ice-free land.</p>


2021 ◽  
Author(s):  
◽  
Bella Duncan

<p>During the Cenozoic Era (the last 65 Ma), Antarctica’s climate has evolved from ice free conditions of the ‘Greenhouse world’, which at its peak (~ 55 Ma) supported near-tropical forests, to the ‘Icehouse’ climate of today with permanent ice sheets, and a very sparse macroflora. This long-term cooling trend is punctuated by a number of major, abrupt, and in some cases, irreversible climate transitions. Reconstructing past changes in vegetation, sea surface temperature, hydroclimate and the carbon cycle require robust geological proxies that in turn can provide insights into climatic thresholds and feedbacks that drove major transitions in the evolution of Antarctica’s ice sheets. Biomarkers allow climate and environmental proxy reconstructions for this region, where other more traditional paleoclimate methods are less suitable. This study has two aims. Firstly to assess the suitability and applicability of biomarkers in Antarctic sediments across a range of depositional settings and ages, and secondly to apply biomarker-based climate proxies to reconstruct environmental and climate conditions during key periods in the development of the Antarctic Ice Sheets.  The distribution and abundances of n-alkanes are assessed in Oligocene and Miocene sediments from a terrestrial outcrop locality in the Transantarctic Mountains, and two glaciomarine sediment cores and an ice-distal deep marine core from the western Ross Sea. Comparisons are made with n-alkane distributions in Eocene glacial erratics and sedimentary rocks of the Mesozoic Beacon Supergroup, both likely sources of reworked material. A shift in dominant chain length from n-C₂₉ to n-C₂₇ occurs between the Late Eocene and Early Oligocene, considered a response to a significant climate cooling. Samples from glaciofluvial environments onshore, and subglacial and ice-proximal environments offshore display a reworked n-alkane distribution, characterised by low carbon preference index (CPI), high average chain length (ACL) and high n-C₂₉/n-C₂₇ values. Whereas, samples from lower-energy, more benign lacustrine and ice-distal marine environments predominantly contained contemporary material.  Palynomorphs and biomarker proxies based on n-alkanes and glycerol dialkyl glycerol tetraethers (GDGTs) are applied to a Late Oligocene and Early Miocene glaciomarine succession spanning the large transient excursion of the Mi-1 glaciation (~23 Ma) in DSDP Site 270 drill core from the central Ross Sea. While the Late Oligocene is marked by relatively warm conditions, regional cooling initiated a transition into Mi-1. This was likely driven by a combination of decreasing atmospheric CO₂ and an orbital geometry favouring low seasonality and cool summers, leading to an intensification of proto-Antarctic bottom water production as the Ross Sea deepened and cooled. Mi-1 manifests as a regionally cool period, with minimum subsurface temperatures of ~4°C and onshore mean summer temperatures of ~8°C. A negative n-alkane δ¹³C excursion of up to 4.8‰ is interpreted as a vegetation response to cold, restricted growing seasons, with plants driven to lower altitudes and more stunted growth forms. However, ocean temperatures remained too warm for marine-based ice sheets to advance onto the outer continental shelf and over-ride the drill site. The large increase in ice volume associated with this event, implied by global δ¹⁸O records, was probably held on a higher, terrestrial West Antarctica of greater extent than present day. The relative lack of ice rafted debris during Mi-1, suggests the presence of a marginal marine-terminating ice sheet with fringing ice shelves to the south of DSDP site 270, calving icebergs lacking a basal debris layer, similar to those calving from the Ross Ice Shelf today. This extensive ice cover may explain a large decrease in marine n-alkanes at this time restricting marine productivity on the continental shelf. The biomarker data for the Early Miocene in DSDP 270 indicates a relative warming in both terrestrial and marine temperatures following the transient Mi-1 glacial expansion, but an overall baseline cooling of climate between Late Oligocene and the Early Miocene in the Ross Sea embayment.  Isoprenoid GDGTs are used to reconstruct a Cenozoic subsurface ocean temperature compilation for the Ross Sea, a key source region of ocean deep water. The ocean temperature TEXL86 calibration and BAYSPAR in standard subsurface mode were considered, through comparison with independent microfossil and sedimentological data, the most appropriate for use in this region. Ocean temperatures cool prior to the Eocene/Oligocene transition and remain cool for the rest of the Cenozoic, with the exception of short periods of relative warmth in the Late Oligocene and Mid-Miocene Climate Optimum, and long-term trends broadly mirror that of the foraminiferal δ¹⁸O record from the deep Pacific. The Δ Ring Index is used to assess non-thermal influences on GDGT distributions, and displays a long term shift from more positive to more negative deviations. This correlates with %GDGT-0, and also relates to a declining trend in the Methane Index, which reflect the contribution of methanogenic and methanotrophic archaea. These changes suggest that these archaea contributed more to the archaeal community in the early to mid Cenozoic, potentially indicating a more anoxic depositional environment in the Ross Sea. The Branched to Isoprenoid Tetraether index (BIT) steadily declines over the Cenozoic, reflecting increasingly hyper-arid conditions onshore, with less active glaciofluvial systems, limited soil development and less ice-free land.</p>


2021 ◽  
Author(s):  
◽  
Claire Louise Shepherd

<p>Earth’s climate underwent a long-term warming trend from the late Paleocene to early Eocene (~58–51 Ma), with global temperature reaching a sustained maximum during the Early Eocene Climatic Optimum (EECO; 53–50 Ma). Geochemical proxies indicate tropical or warm subtropical sea-surface temperature (SST) conditions in middle and high latitudes in the early Eocene, implying a very low latitudinal temperature gradient. This study investigates whether calcareous nannofossil assemblages in the southwest (SW) Pacific provide evidence of these conditions at middle latitudes in the early to middle Eocene, particularly during the EECO. Specifically, this study documents the biogeographic changes of warm- and cold-water nannofossil species along a paleolatitudinal transect through the EECO to track changes in water masses/ocean circulation at that time.  Early to middle Eocene calcareous nannofossil assemblages were examined from four sites along a latitudinal transect in the SW Pacific, extending from Lord Howe Rise in the north to Campbell Plateau in the south and spanning a paleolatitude of ~46–54°S. All of the sections studied in this project span nannofossil zones NP10–16 (Martini, 1971). The data indicate up to three regional unconformities through the sections: at mid-Waipara, Deep Sea Drilling Project (DSDP) Site 207 and 277, part or all of Zone NP10 (lower Waipawan) is missing; at Sites 207 and 277 a possible hiatus occurs within NP12 (upper Waipawan–lower Mangaorapan); and at all sites part or all of Zone NP15 (lower Bortonian) is missing. Results of this study indicate that nannofossil assemblages in the SW Pacific are more similar to floras at temperate to polar sites rather than those at tropical/subtropical sites. However, variations in the relative abundance of key species in the SW Pacific are broadly consistent with the trends seen in the geochemical proxy records: an increase in warm-water taxa coincided with the EECO, corroborating geochemical evidence for a temperature maximum in the SW Pacific during this interval.  The increase in the abundance and diversity of warm-water taxa and decrease in the abundance of cool-water taxa through the EECO supports previous suggestions that a warm-water mass (northward of the proto-Tasman Front) extended to ~55°S paleolatitude during this interval in response to enhanced poleward heat transport and intensification of the proto-East Australian Current. At the southernmost site, DSDP Site 277, a relatively short-lived influx of warm-water taxa at ~51 Ma suggests that warm waters expanded south at this time. However, greater diversity and abundance of warm-water taxa throughout the EECO at DSDP Site 207, suggests that the proto-East Australian Current exerted greater influence at this latitude for a longer duration than at Site 277. An increase in the abundance of cool-water taxa and decrease in diversity and abundance of warm-water taxa at all sites is recorded following the termination of the EECO. This corresponds with the contraction of the proto-Tasman Front due to weakened proto-East Australian Current flow and associated amplification of the proto-Ross Gyre.  Previous estimates of SSTs from geochemical proxies in the SW Pacific during the EECO indicate that there was virtually no latitudinal temperature gradient and temperatures were tropical to subtropical (>20°C). However, nannofossil data from this study indicate warm temperate conditions (~15–20°C) during the EECO, suggesting that a reduced latitudinal gradient was maintained through this interval, which is in agreement with climate models.</p>


2021 ◽  
Author(s):  
◽  
Claire Louise Shepherd

<p>Earth’s climate underwent a long-term warming trend from the late Paleocene to early Eocene (~58–51 Ma), with global temperature reaching a sustained maximum during the Early Eocene Climatic Optimum (EECO; 53–50 Ma). Geochemical proxies indicate tropical or warm subtropical sea-surface temperature (SST) conditions in middle and high latitudes in the early Eocene, implying a very low latitudinal temperature gradient. This study investigates whether calcareous nannofossil assemblages in the southwest (SW) Pacific provide evidence of these conditions at middle latitudes in the early to middle Eocene, particularly during the EECO. Specifically, this study documents the biogeographic changes of warm- and cold-water nannofossil species along a paleolatitudinal transect through the EECO to track changes in water masses/ocean circulation at that time.  Early to middle Eocene calcareous nannofossil assemblages were examined from four sites along a latitudinal transect in the SW Pacific, extending from Lord Howe Rise in the north to Campbell Plateau in the south and spanning a paleolatitude of ~46–54°S. All of the sections studied in this project span nannofossil zones NP10–16 (Martini, 1971). The data indicate up to three regional unconformities through the sections: at mid-Waipara, Deep Sea Drilling Project (DSDP) Site 207 and 277, part or all of Zone NP10 (lower Waipawan) is missing; at Sites 207 and 277 a possible hiatus occurs within NP12 (upper Waipawan–lower Mangaorapan); and at all sites part or all of Zone NP15 (lower Bortonian) is missing. Results of this study indicate that nannofossil assemblages in the SW Pacific are more similar to floras at temperate to polar sites rather than those at tropical/subtropical sites. However, variations in the relative abundance of key species in the SW Pacific are broadly consistent with the trends seen in the geochemical proxy records: an increase in warm-water taxa coincided with the EECO, corroborating geochemical evidence for a temperature maximum in the SW Pacific during this interval.  The increase in the abundance and diversity of warm-water taxa and decrease in the abundance of cool-water taxa through the EECO supports previous suggestions that a warm-water mass (northward of the proto-Tasman Front) extended to ~55°S paleolatitude during this interval in response to enhanced poleward heat transport and intensification of the proto-East Australian Current. At the southernmost site, DSDP Site 277, a relatively short-lived influx of warm-water taxa at ~51 Ma suggests that warm waters expanded south at this time. However, greater diversity and abundance of warm-water taxa throughout the EECO at DSDP Site 207, suggests that the proto-East Australian Current exerted greater influence at this latitude for a longer duration than at Site 277. An increase in the abundance of cool-water taxa and decrease in diversity and abundance of warm-water taxa at all sites is recorded following the termination of the EECO. This corresponds with the contraction of the proto-Tasman Front due to weakened proto-East Australian Current flow and associated amplification of the proto-Ross Gyre.  Previous estimates of SSTs from geochemical proxies in the SW Pacific during the EECO indicate that there was virtually no latitudinal temperature gradient and temperatures were tropical to subtropical (>20°C). However, nannofossil data from this study indicate warm temperate conditions (~15–20°C) during the EECO, suggesting that a reduced latitudinal gradient was maintained through this interval, which is in agreement with climate models.</p>


2021 ◽  
Vol 40 (2) ◽  
pp. 101-144
Author(s):  
Francesco Miniati ◽  
Carlotta Cappelli ◽  
Simonetta Monechi

Abstract. We present a taxonomic revision of the family Fasciculithaceae focused on forms that characterize the early evolution of this family group, which are currently included within the genera Gomphiolithus, Diantholitha, Lithoptychius and Fasciculithus. The investigation approach is based on a combined light microscope (LM) and scanning electron microscope (SEM) analysis of specimens from well-preserved ODP–DSDP site material (ODP Site 1209; Site 1262; ODP Site 1267; DSDP Site 356; DSDP Site 119) and outcrops (Bottaccione and Contessa, Italy; Qreiya, Egypt) across the Danian–Selandian transition. The direct LM–SEM comparison of the same individual specimen provides clarification of several taxa that were previously described only with the LM. One new genus (Tectulithus), five new combinations (Tectulithus janii, Tectulithus merloti, Tectulithus pileatus, Tectulithus stegastos and Tectulithus stonehengei) and six new species are defined (Diantholitha pilula, Diantholitha toquea, Lithoptychius galeottii, Lithoptychius maioranoae, Tectulithus pagodiformis and Fasciculithus realeae). The main characteristics useful to identify fasciculiths with the LM are provided, together with a 3D–2D drawing showing the main structural features. The accurate taxonomic characterization grants the development of an evolutionary lineage that documents a great fasciculith diversification during the late Danian and early Selandian. Four different well-constrained events have been documented: the lowest occurrence (LO) of Gomphiolithus, the paracme of Fasciculithaceae at the top of Chron C27r (PTC27r), the radiation of Diantholitha (LO Diantholitha), the paracme of Fasciculithaceae at the base of Chron C26r (PBC26r), the radiation of Lithoptychius (LO Lithoptychius) and the radiation of Tectulithus (lowest common occurrence of Tectulithus) that shows the biostratigraphic relevance of this group across the Danian–Selandian transition.


2021 ◽  
Author(s):  
Frida Hoem ◽  
Suning Hou ◽  
Matthew Huber ◽  
Francesca Sangiorgi ◽  
Henk Brinkhuis ◽  
...  

&lt;p&gt;The opening of the Tasmanian Gateway during the Eocene and further deepening in the Oligocene is hypothesized to have reorganized ocean currents, preconditioning the Antarctic Circumpolar Current (ACC) to evolve into place. However, fundamental questions still remain on the past Southern Ocean structure. We here present reconstructions of latitudinal temperature gradients and the position of ocean frontal systems in the Australian sector of the Southern Ocean during the Oligocene. We generated new sea surface temperature (SST) and dinoflagellate cyst data from the West Tasman margin, ODP Site 1168. We compare these with other records around the Tasmanian Gateway, and with climate model simulations to analyze the paleoceanographic evolution during the Oligocene. The novel organic biomarker TEX&lt;sub&gt;86&lt;/sub&gt;- SSTs from ODP Site 1168, range between 19.6 &amp;#8211; 27.9&amp;#176;C (&amp;#177; 5.2&amp;#176;C, using the linear calibration by Kim et al., 2010), supported by temperate and open ocean dinoflagellate cyst assemblages. The data compilation, including existing TEX&lt;sub&gt;86&lt;/sub&gt;-based SSTs from ODP Site 1172 in the Southwest Pacific Ocean, DSDP Site 274 offshore Cape Adare, DSDP Site 269 and IODP Site U1356 offshore the Wilkes Land Margin and terrestrial temperature proxy records from the Cape Roberts Project (CRP) on the Ross Sea continental shelf, show synchronous variability in temperature&amp;#160;evolution between&amp;#160;Antarctic and&amp;#160;Australian sectors of the Southern Ocean. The SST gradients are around 10&amp;#176;C latitudinally across the Tasmanian Gateway throughout the early Oligocene, and increasing in the Late Oligocene. This increase can be explained by polar amplification/cooling, tectonic drift, strengthening of atmospheric currents and ocean currents. We suggest that the progressive cooling of Antarctica and the absence of mid-latitude cooling strengthened the westerly winds, which in turn could drive an intensification of the ACC and strengthening of Southern Ocean frontal systems.&lt;/p&gt;


2021 ◽  
Author(s):  
Jonathan Hall ◽  
Stephen Jones ◽  
Tom Dunkley Jones ◽  
James Bendle

&lt;p&gt;The mid-Pliocene Warm Period (mPWP) is the most recent time slice (3.264&amp;#8211;3.025 Ma) during which average global surface temperatures were 2&amp;#8211;3&amp;#176;C warmer than preindustrial conditions, within the range estimated by the Intergovernmental Panel on Climate Change (IPCC) for the end of the 21&lt;sup&gt;st&amp;#160;&lt;/sup&gt;Century. Global mPWP sea surface temperature (SST) compilations indicate enhanced warming in the NE Atlantic and Nordic Seas, with anomalies of &gt;6&amp;#176;C based on alkenone methods (Dowsett et al., 2012). However, this warming far exceeds the more conservative SST estimates (a rise of 2&amp;#8722;3&amp;#176;C) predicted by the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) reconstructions and leading climate models (including HadCM3). Here, we present new mid-Pliocene alkenone SST records from four regional drilling sites (IODP Site U1308, DSDP Site 552, ODP Site 642 and ODP Site 907) to further examine the magnitude of warming in the NE Atlantic and Nordic Seas, and to evaluate regional discrepancies between proxy and model SST estimates. We demonstrate mid-Pliocene SSTs peaked up to 21.5&amp;#176;C and 19.7&amp;#176;C in the NE Atlantic and Nordic Seas, respectively, consistent with existing studies (Robinson et al., 2008; Robinson, 2009). However, we reveal the majority of these SST estimates are derived from GC injections of relatively low total alkenone concentrations (&lt;50 ng/&amp;#181;l), which are susceptible to warming biases caused by chromatographic irreversible adsorption (Grimalt et al., 2001). We subsequently filtered and applied a mathematical correction to our new data to rectify for these warming biases, which results in a reduction in mPWP SSTs, by up to 3.2&amp;#176;C, across all four sites. The corrected (and cooler) alkenone SST records indicate the magnitude of warming in the NE Atlantic and Nordic Seas may be significantly less than previously thought, helping to reduce and explain regional discrepancies between proxy- and model-based SST reconstructions.&lt;/p&gt;


2021 ◽  
Vol 17 (1) ◽  
pp. 469-490
Author(s):  
Wolf Dummann ◽  
Sebastian Steinig ◽  
Peter Hofmann ◽  
Matthias Lenz ◽  
Stephanie Kusch ◽  
...  

Abstract. Extensive black shale deposits formed in the Early Cretaceous South Atlantic, supporting the notion that this emerging ocean basin was a globally important site of organic carbon burial. The magnitude of organic carbon burial in marine basins is known to be controlled by various tectonic, oceanographic, hydrological, and climatic processes acting on different temporal and spatial scales, the nature and relative importance of which are poorly understood for the young South Atlantic. Here we present new bulk and molecular geochemical data from an Aptian–Albian sediment record recovered from the deep Cape Basin at Deep Sea Drilling Project (DSDP) Site 361, which we combine with general circulation model results to identify driving mechanisms of organic carbon burial. A multimillion-year decrease (i.e., Early Aptian–Albian) in organic carbon burial, reflected in a lithological succession of black shale, gray shale, and red beds, was caused by increasing bottom water oxygenation due to abating hydrographic restriction via South Atlantic–Southern Ocean gateways. These results emphasize basin evolution and ocean gateway development as a decisive primary control on enhanced organic carbon preservation in the Cape Basin at geological timescales (> 1 Myr). The Early Aptian black shale sequence comprises alternations of shales with high (> 6 %) and relatively low (∼ 3.5 %) organic carbon content of marine sources, the former being deposited during the global Oceanic Anoxic Event (OAE) 1a, as well as during repetitive intervals before and after OAE 1a. In all cases, these short-term intervals of enhanced organic carbon burial coincided with strong influxes of sediments derived from the proximal African continent, indicating closely coupled climate–land–ocean interactions. Supported by our model results, we show that fluctuations in weathering-derived nutrient input from the southern African continent, linked to changes in orbitally driven humidity and aridity, were the underlying drivers of repetitive episodes of enhanced organic carbon burial in the deep Cape Basin. These results suggest that deep marine environments of emerging ocean basins responded sensitively and directly to short-term fluctuations in riverine nutrient fluxes. We explain this relationship using the lack of wide and mature continental shelf seas that could have acted as a barrier or filter for nutrient transfer from the continent into the deep ocean.


Sign in / Sign up

Export Citation Format

Share Document