resistive plate chambers
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 17 (01) ◽  
pp. C01011
Author(s):  
A. Samalan ◽  
M. Tytgat ◽  
G.A. Alves ◽  
F. Marujo ◽  
F. Torres Da Silva De Araujo ◽  
...  

Abstract During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb−1. The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solenoid (CMS) experiment. To ensure a highly performing muon system for this period, several upgrades of the Resistive Plate Chamber (RPC) system of the CMS are currently being implemented. These include the replacement of the readout system for the present system, and the installation of two new RPC stations with improved chamber and front-end electronics designs. The current overall status of this CMS RPC upgrade project is presented.


2021 ◽  
Vol 16 (12) ◽  
pp. C12009
Author(s):  
N. Trevisani

Abstract This contribution presents an update on the Analytical Method (AM) algorithm for trigger primitive (TP) generation in the CMS Drift Tube (DT) chambers during the High Luminosity LHC operation (HL-LHC or LHC phase 2). The algorithm has been developed and validated both in software with an emulation approach, and through hardware implementation tests. The algorithm is mainly divided into the following steps: a grouping (pattern recognition) step that finds the path of a given muon, a fitting step to extract the track parameters (position and bending angle), and a correlation step that matches the information from the different super-layers and with signal from the resistive plate chambers. Agreement between the software emulation and the firmware implementation has been verified using different data samples, including a sample of real muons collected during 2016 data taking. In this contribution, an update of the grouping step using a pseudo-Bayes classifier will be discussed.


2021 ◽  
Vol 16 (11) ◽  
pp. P11022
Author(s):  
Y. Pezeshkian ◽  
A. Kiyoumarsioskouei ◽  
M. Ahmadpouri ◽  
G. Ghorbani

Abstract A prototype of a single-gap glass Resistive Plate Chamber (RPC) is constructed by the authors. To find the requirements for better operation of the detector's gas system, we have simulated the flow of the Argon gas through the detector by using computational fluid dynamic methods. Simulations show that the pressure inside the chamber linearly depends on the gas flow rate and the chamber's output hose length. The simulation results were compatible with experiments. We have found that the pressure-driven speed of the gas molecules is two orders of magnitude larger in the inlet and outlet regions than the blocked corners of a 14 × 14 cm2 chamber, and most likely the difference in speed is higher for larger detectors and different geometries.


2021 ◽  
Vol 136 (6) ◽  
Author(s):  
Alessandro Cianchi ◽  
Carla Andreani ◽  
Paolo Camarri ◽  
Laura Fazi ◽  
Claudio Fornaro ◽  
...  

AbstractMuon tomography is a very promising imaging technique for the control of cargo containers. It takes advantage of cosmic muons and their interaction mechanisms to reconstruct images of the volume traversed by these particles. In the present work, the imaging performance of a novel muon tomography scanner based on resistive plate chambers detectors is investigated. By means of several Monte Carlo simulations, some imaging parameters are evaluated. The results in terms of spatial resolution, field-of-view and volume and material recognition make the presented scanner and its geometry suitable for muon tomography.


2021 ◽  
Vol 11 (11) ◽  
pp. 4722
Author(s):  
Botan Wang ◽  
Xiaolong Chen ◽  
Yi Wang ◽  
Dong Han ◽  
Baohong Guo ◽  
...  

This work reports the latest observations on the behavior of two Multigap Resistive Plate Chambers (MRPC) under wide high-luminosity exposures, which motivate the development and in-beam test of the sealed MRPC prototype assembled with low-resistive glass. The operation currently being monitored, together with previous simulation results, shows the impact of gas pollution caused by avalanches in gas gaps, and the necessity to shrink the gas-streaming volume. With the lateral edge of the detector sealed by a 3D-printed frame, a reduced gas-streaming volume of ~170 mL has been achieved for a direct gas flow to the active area. A high-rate test of the sealed MRPC prototype shows that, ensuring a 97% efficiency and 70 ps time resolution, the sealed design results in a stable operation current behavior at a counting rate of 3–5 kHz/cm2. The sealed MRPC will become a potential solution for future high luminosity applications.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
M. Abbrescia ◽  
C. Avanzini ◽  
L. Baldini ◽  
R. Baldini Ferroli ◽  
G. Batignani ◽  
...  

AbstractThis paper describes the simulation framework of the extreme energy events (EEE) experiment. EEE is a network of cosmic muon trackers, each made of three multi-gap resistive plate chambers (MRPC), able to precisely measure the absolute muon crossing time and the muon integrated angular flux at the ground level. The response of a single MRPC and the combination of three chambers have been implemented in a GEANT4-based framework (GEMC) to study the telescope response. The detector geometry, as well as details about the surrounding materials and the location of the telescopes have been included in the simulations in order to realistically reproduce the experimental set-up of each telescope. A model based on the latest parametrization of the cosmic muon flux has been used to generate single muon events. After validating the framework by comparing simulations to selected EEE telescope data, it has been used to determine detector parameters not accessible by analysing experimental data only, such as detection efficiency, angular and spatial resolution.


2021 ◽  
Vol 16 (04) ◽  
pp. C04003
Author(s):  
C. Pinto ◽  
M. Abbrescia ◽  
C. Avanzini ◽  
L. Baldini ◽  
R. Baldini Ferroli ◽  
...  

2021 ◽  
Vol 16 (01) ◽  
pp. P01001-P01001
Author(s):  
X.Y. Xie ◽  
Q.Y. Li ◽  
C.H. Tian ◽  
M. Yuan ◽  
Y.J. Sun

Sign in / Sign up

Export Citation Format

Share Document