high signal
Recently Published Documents


TOTAL DOCUMENTS

2225
(FIVE YEARS 837)

H-INDEX

65
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Nikita Dmitriev ◽  
Sergey Koptyaev ◽  
Andrey Voloshin ◽  
Nikita Kondratiev ◽  
Valery Lobanov ◽  
...  

Abstract Dual-comb interferometry is based on self-heterodyning two optical frequency combs, with corresponding mapping of the optical spectrum into the radio-frequency domain. The dual-comb enables diverse applications, including metrology, fast high-precision spectroscopy with high signal-to-noise ratio, distance ranging, and coherent optical communications. However, current dual-frequency-comb systems are designed for research applications and typically rely on scientific equipment and bulky mode-locked lasers. Here we demonstrate for the first time a fully integrated power-efficient dual-microcomb source that is electrically driven and allows turnkey operation. Our implementation uses commercially available components, including distributed-feedback and Fabry--Perot laser diodes, and silicon nitride photonic circuits with microresonators fabricated in commercial multi-project wafer runs. Our devices are therefore unique in terms of size, weight, power consumption, and cost. Laser-diode self-injection locking relaxes the requirements on microresonator spectral purity and Q-factor, so that we can generate soliton microcombs resilient to thermal frequency drift and with pump-to-comb sideband efficiency of up to 40% at mW power levels. We demonstrate down-conversion of the optical spectrum from 1400 nm to 1700 nm into the radio-frequency domain, which is valuable for fast wide-band Fourier spectroscopy, which was previously not available with chip-scale devices. Our findings pave the way for further integration of miniature microcomb-based sensors and devices for high-volume applications, thus opening up the prospect of innovative products that redefine the market of industrial and consumer mobile and wearable devices and sensors.


2022 ◽  
Author(s):  
Corentin Jacques ◽  
Jacques Jonas ◽  
Sophie Colnat-Coulbois ◽  
Louis Maillard ◽  
Bruno Rossion

In vivo intracranial recordings of neural activity offer a unique opportunity to understand human brain function. Intracranial electrophysiological (iEEG) activity related to sensory, cognitive or motor events manifests mostly in two types of signals: event-related local field potentials in lower frequency bands (<30 Hz, LF) and broadband activity in the higher end of the frequency spectrum (>30 Hz, High frequency, HF). While most current studies rely exclusively on HF, thought to be more focal and closely related to spiking activity, the relationship between HF and LF signals is unclear, especially in human associative cortex. Here we provide a large-scale in-depth investigation of the spatial and functional relationship between these 2 signals based on intracranial recordings from 121 individual brains (8000 recording sites). We measure selective responses to complex ecologically salient visual stimuli – human faces - across a wide cortical territory in the ventral occipito-temporal cortex (VOTC), with a frequency-tagging method providing high signal-to-noise ratio (SNR) and the same objective quantification of signal and noise for the two frequency ranges. While LF face-selective activity has higher SNR across the VOTC, leading to a larger number of significant electrode contacts especially in the anterior temporal lobe, LF and HF display highly similar spatial, functional, and timing properties. Specifically, and contrary to a widespread assumption, our results point to nearly identical spatial distribution and local spatial extent of LF and HF activity at equal SNR. These observations go a long way towards clarifying the relationship between the two main iEEG signals and reestablish the informative value of LF iEEG to understand human brain function.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zachary L. Newman ◽  
Dariya Bakshinskaya ◽  
Ryan Schultz ◽  
Samuel J. Kenny ◽  
Seonah Moon ◽  
...  

AbstractNeural circuit function depends on the pattern of synaptic connections between neurons and the strength of those connections. Synaptic strength is determined by both postsynaptic sensitivity to neurotransmitter and the presynaptic probability of action potential evoked transmitter release (Pr). Whereas morphology and neurotransmitter receptor number indicate postsynaptic sensitivity, presynaptic indicators and the mechanism that sets Pr remain to be defined. To address this, we developed QuaSOR, a super-resolution method for determining Pr from quantal synaptic transmission imaging at hundreds of glutamatergic synapses at a time. We mapped the Pr onto super-resolution 3D molecular reconstructions of the presynaptic active zones (AZs) of the same synapses at the Drosophila larval neuromuscular junction (NMJ). We find that Pr varies greatly between synapses made by a single axon, quantify the contribution of key AZ proteins to Pr diversity and find that one of these, Complexin, suppresses spontaneous and evoked transmission differentially, thereby generating a spatial and quantitative mismatch between release modes. Transmission is thus regulated by the balance and nanoscale distribution of release-enhancing and suppressing presynaptic proteins to generate high signal-to-noise evoked transmission.


Author(s):  
Ziang Xu ◽  
Liang Xiao ◽  
Chen Liu ◽  
Quanlai Zhao ◽  
Yu Zhang ◽  
...  

Objectives: Objectives: The purpose of this study was to investigate the surgical efficacy and risk factors of cervical spondylotic myelopathy (CSM) patients with increased signal intensity (ISI) on T2-weighted magnetic resonance imaging (MRI-T2WI). Methods: We compared the surgical outcomes of CSM patients with and without ISI. In addition, we compared the efficacy of anterior and posterior cervical decompression in CSM patients with ISI. We also analyzed the risk factors of MRI-T2WI ISI in CSM patients. Results: The incidence of ISI among 153 CSM patients was 71.89%. The JOA score and JOA remission rate were better in the ISI-free than ISI group. The postoperative JOA score and JOA remission rate were better in the posterior than anterior approach surgery group. The disease duration and vertebral canal volume were risk factors for ISI in CSM patients. Conclusion: Among patients with CSM, the prognosis is worse for those with than without ISI. Posterior cervical decompression surgery produces a better curative effect than does anterior cervical decompression surgery in CSM patients with ISI. CSM patients who have a long disease duration and small vertebral canal volume should undergo surgical treatment as early as possible.


2022 ◽  
Vol 15 ◽  
Author(s):  
Grady W. Jensen ◽  
Patrick van der Smagt ◽  
Harald Luksch ◽  
Hans Straka ◽  
Tobias Kohl

Knowledge about body motion kinematics and underlying muscle contraction dynamics usually derives from electromyographic (EMG) recordings. However, acquisition of such signals in snakes is challenging because electrodes either attached to or implanted beneath the skin may unintentionally be removed by force or friction caused from undulatory motion, thus severely impeding chronic EMG recordings. Here, we present a reliable method for stable subdermal implantation of up to eight bipolar electrodes above the target muscles. The mechanical stability of the inserted electrodes and the overnight coverage of the snake body with a “sleeping bag” ensured the recording of reliable and robust chronic EMG activity. The utility of the technique was verified by daily acquisition of high signal-to-noise activity from all target sites over four consecutive days during stimulus-evoked postural reactions in Amazon tree boas and Western diamondback rattlesnakes. The successful demonstration of the chronic recording suggests that this technique can improve acute experiments by enabling the collection of larger data sets from single individuals.


2022 ◽  
Author(s):  
Naoko Ogura ◽  
Mieko Inagaki ◽  
Ritsuko Yasuda ◽  
Shigeki Yoshida ◽  
Tetsuo Maeda

A fibroepithelial stromal polyp is a benign soft tissue tumour that can occur in the vagina, vulva and uterine cervix. Magnetic resonance imaging (MRI) findings have been reported in patients with vulvar fibroepithelial stromal polyps, not in those with vaginal polyps. We present MRI findings of vaginal fibroepithelial stromal polyp in a postmenopausal female. A 1 to 2 cm firm vaginal mass arising from the left side of the vaginal wall with hypointense signal changes on T1W MRI was identified. A well-defined vaginal mass (1 cm diameter) was detected with inhomogeneous signal intensity on T2W images. However, a major portion had high signal intensity on diffusion-weighted images. A benign vaginal lesion with oedematous changes or myxoid degeneration was suspected. Vaginal resection was performed, and fibroepithelial stromal polyp was pathologically diagnosed. MRI may be a useful non-invasive modality for preoperatively diagnosing vaginal fibroepithelial stromal polyps.


2022 ◽  
pp. 0271678X2110723
Author(s):  
Hanne Stotesbury ◽  
Patrick W Hales ◽  
Melanie Koelbel ◽  
Anna M Hood ◽  
Jamie M Kawadler ◽  
...  

Prior studies have described high venous signal qualitatively using arterial spin labelling (ASL) in patients with sickle cell anemia (SCA), consistent with arteriovenous shunting. We aimed to quantify the effect and explored cross-sectional associations with arterial oxygen content (CaO2), disease-modifying treatments, silent cerebral infarction (SCI), and cognitive performance. 94 patients with SCA and 42 controls underwent cognitive assessment and MRI with single- and multi- inflow time (TI) ASL sequences. Cerebral blood flow (CBF) and bolus arrival time (BAT) were examined across gray and white matter and high-signal regions of the sagittal sinus. Across gray and white matter, increases in CBF and reductions in BAT were observed in association with reduced CaO2 in patients, irrespective of sequence. Across high-signal sagittal sinus regions, CBF was also increased in association with reduced CaO2 using both sequences. However, BAT was increased rather than reduced in patients across these regions, with no association with CaO2. Using the multiTI sequence in patients, increases in CBF across white matter and high-signal sagittal sinus regions were associated with poorer cognitive performance. These novel findings highlight the utility of multiTI ASL in illuminating, and identifying objectively quantifiable and functionally significant markers of, regional hemodynamic stress in patients with SCA.


2022 ◽  
Vol 163 (2) ◽  
pp. 46
Author(s):  
Kate Y. L. Su ◽  
G. H. Rieke ◽  
M. Marengo ◽  
Everett Schlawin

Abstract We report Spitzer 3.6 and 4.5 μm photometry of 11 bright stars relative to Sirius, exploiting the unique optical stability of the Spitzer Space Telescope point-spread function (PSF). Spitzer's extremely stable beryllium optics in its isothermal environment enables precise comparisons in the wings of the PSF from heavily saturated stars. These bright stars stand as the primary sample to improve stellar models, and to transfer the absolute flux calibration of bright standard stars to a sample of fainter standards useful for missions like JWST and for large ground-based telescopes. We demonstrate that better than 1% relative photometry can be achieved using the PSF wing technique in the radial range of 20″–100″ for stars that are fainter than Sirius by 8 mag (from outside the saturated core to a large radius where a high signal-to-noise ratio profile can still be obtained). We test our results by (1) comparing the [3.6]−[4.5] color with that expected between the WISE W1 and W2 bands, (2) comparing with stars where there is accurate K S photometry, and (3) also comparing with relative fluxes obtained with the DIRBE instrument on COBE. These tests confirm that relative photometry is achieved to better than 1%.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 215
Author(s):  
Pietro Valerio Foti ◽  
Corrado Inì ◽  
Giuseppe Broggi ◽  
Renato Farina ◽  
Stefano Palmucci ◽  
...  

Necrosis in uveal melanomas can be spontaneous or induced by radiotherapy. The purpose of our study was to compare the histopathologic and MRI findings of radiation-induced necrosis of a group of proton beam-irradiated uveal melanomas with those of spontaneous necrosis of a control group of patients undergoing primary enucleation. 11 uveal melanomas who had undergone proton beam radiotherapy, MRI and secondary enucleation, and a control group of 15 untreated uveal melanomas who had undergone MRI and primary enucleation were retrospectively identified. Within the irradiated and nonirradiated group, 7 and 6 eyes with histological evidence of necrosis respectively, were furtherly selected for the final analysis; the appearance of necrosis was assessed at histopathologic examination and MRI. Irradiated melanomas showed a higher degree of necrosis as compared with nonirradiated tumors. Irradiated and nonirradiated lesions differed based on the appearance and distribution of necrosis. Irradiated tumors showed large necrotic foci, sharply demarcated from the viable neoplastic tissue; nonirradiated tumors demonstrated small, distinct foci of necrosis. Radiation-induced necrosis, more pigmented than surrounding viable tumor, displayed high signal intensity on T1-weighted and low signal intensity on T2-weighted images. The hemorrhagic/coagulative necrosis, more prevalent in nonirradiated tumors (4 out of 6 vs. 1 out of 7 cases), appeared hyperintense on T2-weighted and hypointense on T1-weighted images. Our study boosts the capability to recognize radiation-induced alterations in uveal melanomas at MRI and may improve the accuracy of radiologists in the evaluation of follow-up MR examination after radiotherapy.


Author(s):  
Fuyin Ma ◽  
Linbo Wang ◽  
Pengyu Du ◽  
Chang Wang ◽  
Jiu Hui Wu

Abstract We propose a three-dimensional (3D) omnidirectional underwater acoustic concentrator based on the concept of acoustic prison, which can realize a substantial enhancement of underwater sound signals in broadband ranges. This device mainly employs the non-resonant multiple reflection characteristics of the semi-enclosed geometric space, so it has a wide working frequency bandwidth. Compared with the previous reported concentrators based on transform acoustics mechanism, the structure is more simple, and most importantly, it can realize omnidirectional signal enhancement in 3D space. Moreover, the working frequency band of this acoustic concentrator depends on the size of the concentrator, so it can be changed directly through a size scaling, which is convenient for engineering applications. In general, the designed underwater acoustic concentrator has the advantages of simple structure, scalability and large bandwidth of working frequency, and high signal gain. It has potential application values in underwater target detection and other aspects.


Sign in / Sign up

Export Citation Format

Share Document