resonant capacitor
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8569
Author(s):  
Nikolay Madzharov ◽  
Nikolay Hinov

This paper presents the analysis, modeling, simulation and practical studies of resonant inverters with a voltage limitation on the resonant capacitor. The power circuits obtained in this way are characterized by the fact that the power consumption does not depend on the load changes, but is a function of the operating frequency, the value of the resonant capacitor and the supply voltage—these are the so-called inverters with energy dosing. Analytical dependences, simulations and experimental results were determined, which described the behavior of the studied power electronic devices. The obtained expressions for the inverter current in the different stages of the converter operation were the basis for the creation of the engineering methodology for their design and prototyping. Based on the derived basic ratios and characteristics, the capabilities of these devices for self-adaptation to the needs and changes of the load were demonstrated. A comparison of the characteristics of classical resonant inverters and those with energy dosing was made, thus demonstrating their qualities and advantages. The presented results display the properties of this class of circuits and the challenges to their effective application to find the optimal solution for the implementation of charging stations for different specific needs. On the other hand, the limitations in the use of these circuits were that no power was consumed from the power supply during the whole period, the lack of limitation of the maximum current through the transistors and the need for sufficient time to dissipate energy in the resonant inductor when working with high-resistance and low-power loads.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7432
Author(s):  
Cao Anh Tuan ◽  
Takaharu Takeshita

Development of high-frequency-isolated DC-DC converters is underway for charging and discharging electric vehicle batteries. As a charger, a Single Active Bridge (SAB) converter, which is composed of a primary full-bridge converter, a high-frequency transformer, and a secondary full-bridge diode rectifier circuit, has been proposed as a unidirectional high frequency isolated DC-DC converter. In this paper, as a simple circuit configuration, a Secondary-Resonant Single-Active-Half-Bridge (SR-SAHB) converter, in which the primary and secondary circuits of the SAB converter are both half-bridge circuits, and a resonant capacitor connected in parallel to each secondary diode, is created. Due to the partial resonance on the secondary side, power transmission with unity transformer turn ratio and unity voltage conversion ratio can be realized, and a high total input power factor of the transformer can be achieved. As a result, the maximum voltage and current of the switching devices and the transformer voltage can be reduced. Moreover, soft switching in all commutations can be realized. The operation waveform is analyzed, and output power control is derived using the variable frequency control method. The effectiveness of the proposed SR-SAHB has been verified by experimental results using a 2.4 kW 20 kHz, 265V laboratory prototype.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6349
Author(s):  
Cao Anh Tuan ◽  
Takaharu Takeshita

A compact and highly efficient unidirectional DC–DC converter is required as a battery charger for electrical vehicles, which will rapidly become widespread in the near future. The single active bridge (SAB) converter is proposed as a simple and high-frequency isolated unidirectional converter, which is comprised of an active H-bridge converter in the primary side, an isolated high frequency transformer, and a rectifying secondary diode bridge output circuit. This paper presents a novel, unidirectional, high-frequency isolated DC–DC converter called a Secondary Resonant Single Active Bridge (SR–SAB) DC–DC converter. The circuit topology of the SR–SAB converter is a resonant capacitor connected to each diode in parallel in order to construct the series resonant circuit in the secondary circuit. As a result, the SR–SAB converter achieves a higher total power factor at the high frequency transformer and a unity voltage conversion ratio under the unity transformer turns ratio. Small and nonsignificant overshoot values of current and voltage waveforms are observed. Soft-switching commutations of the primary H-bridge circuit and the soft recovery of secondary diode bridge are achieved. The operating philosophy and design method of the proposed converter are presented. Output power control using transformer frequency variation is proposed. The effectiveness of the SR–SAB converter was verified by experiments using a 1 kW, 48 VDC, and 20 kHz laboratory prototype.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1736
Author(s):  
Jaean Kwon ◽  
Rae-Young Kim

High-voltage DC power supplies are used in several applications, including X-ray, plasma, electrostatic precipitator, and capacitor charging. However, such a high-voltage power supply has problems, such as a decrease in reliability, owing to an increase in output ripple voltage, and a decrease in power density, owing to an increase in volume. Therefore, this study proposes a method for improving the power density of a parallel resonant converter using the parasitic capacitor of the secondary side of the transformer. Due to the fact that high-voltage power supplies have many turns on the secondary side, a significant number of parasitic capacitors are generated. In addition, in the case of a parallel resonant converter, because the transformer and the primary resonant capacitor are connected in parallel, the parasitic capacitor component generated on the secondary side of the transformer can be equalized and used. A parallel cap-less resonant converter structure developed using the parasitic components of such transformers is proposed. Primary side and secondary side equivalent model analyses are conducted in order to derive new equations and gain waveforms. Finally, the validity of the proposed structure is verified experimentally.


2021 ◽  
Vol 6 (1) ◽  
pp. 63-73
Author(s):  
Hossein Khoun-Jahan ◽  

Cascaded multilevel inverter (CMI) topology is prevalent in many applications. However, the CMI requires many switches and isolated dc sources, which is the main drawback of this type of inverter. As a result, the volume, cost and complexity of the CMI topology are increased and the efficiency is deteriorated. This paper thus proposes a switched-capacitor-based multilevel inverter topology with half-bridge cells and only one dc source. Compared to the conventional CMI, the proposed inverter uses almost half the number of switches, while maintaining a boosting capability. Additionally, the main drawback of switched-capacitor multilevel inverters is the capacitor inrush current. This problem is also averted in the proposed topology by using a charging inductor or quasi-resonant capacitor charging with a front-end boost converter. Simulation results and lab-scale experimental verifications are provided to validate the feasibility and viability of the proposed inverter topology.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 632
Author(s):  
Ching-Yao Liu ◽  
Guo-Bin Wang ◽  
Chih-Chiang Wu ◽  
Edward Chang ◽  
Stone Cheng ◽  
...  

In this study, we investigated the resonance mechanism of 6.78 MHz resonant wireless power transfer (WPT) systems. The depletion mode of a gallium nitride high-electron-mobility transistor (GaN HEMT) was used to switch the states in a class-E amplifier circuit in this high frequency. The D-mode GaN HEMT without a body diode prevented current leakage from the resonant capacitor when the drain-source voltage became negative. The zero-voltage switching control was derived according to the waveform of the resonant voltage across the D-mode GaN HEMT without the use of body diode conduction. In this study, the effect of the resonant frequency and the duty cycle on the resonance mechanism was derived to achieve the highest WPT efficiency. The result shows that the power transfer efficiency (PTE) is higher than 80% in a range of 40 cm transfer distance, and the power delivered to load (PDL) is measured for different distances. It is also possible to cover different applications related to battery charging and others using the proposed design.


2020 ◽  
Vol 13 (6) ◽  
pp. 1267-1274
Author(s):  
Jorge Villa ◽  
Luis A. Barragan ◽  
Denis Navarro ◽  
Jose I. Artigas ◽  
Alberto Dominguez

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1581 ◽  
Author(s):  
Takaya Arai ◽  
Hiroshi Hirayama

In this paper, a folded spiral resonator with a double-layered structure for near-field wireless power transfer is proposed. In near-field wireless power transfer, conjugate impedance matching is important to achieve high transfer efficiency. To achieve maximum available efficiency, it is common to connect a matching circuit to the antenna. However, the loss increases if a matching circuit is used. A coupling inductor with a resonant capacitor has the capability to adjust an imaginary part of the input impedance, whereas the folded spiral resonator has the capability to adjust both the imaginary and real parts of the input impedance. This resonator can achieve the maximum available efficiency without a matching circuit. This paper shows that the folded spiral resonator with a double-layered structure realizes high transfer efficiency compared to conventional models.


Sign in / Sign up

Export Citation Format

Share Document