condensation process
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 139)

H-INDEX

35
(FIVE YEARS 5)

Author(s):  
Ningqi Sun ◽  
Yingshu Liu ◽  
Ziyi Li ◽  
Jiaxin Liu ◽  
Xiong Yang ◽  
...  

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 97
Author(s):  
Caroline Desgranges ◽  
Jerome Delhommelle

Using molecular simulations, we study the processes of capillary condensation and capillary evaporation in model mesopores. To determine the phase transition pathway, as well as the corresponding free energy profile, we carry out enhanced sampling molecular simulations using entropy as a reaction coordinate to map the onset of order during the condensation process and of disorder during the evaporation process. The structural analysis shows the role played by intermediate states, characterized by the onset of capillary liquid bridges and bubbles. We also analyze the dependence of the free energy barrier on the pore width. Furthermore, we propose a method to build a machine learning model for the prediction of the free energy surfaces underlying capillary phase transition processes in mesopores.


Author(s):  
Kazi Hasibur Rahman ◽  
Asit Kumar Kar

Abstract TiO2 is considered a promising candidate for catalysis applications.The addition of acetic acid and its variation creates a strong bonding withoxide surfaces which generates various oxidizing agents. The XRD analysis of the prepared TiO2 nanoparticles reveals the semicrystalline nature. The result shows that holes are captured by surface and subsurface, producing≡〖Ti〗^IV‒〖OH〗^. , ≡〖Ti〗^IV‒O^(.-)‒〖Ti〗^IV≡ and reducing agent =〖Ti〗^III‒, which act as active oxidizersduring photocatalysis confirmingthe occurrence of OH radical by advanced oxidation process. Increasing acetic acid amount leads to disordered structural defects below the conduction band. XPS analysis shows the induction of hydroxylation of surface defects such as Ti‒OH.The results indicate that oxygen vacancy is favourabledue toa large number of surface defects. Detailed discussion of energy band structure with the concept of valence band and CB maximum isimplemented. The electron-withdrawing carboxylic group can affect oxygen vacancies and acetate ligands on the photocatalyst surface. The formation of bidentate acetate adstructure with lower acetic acid concentration leads to an explanation for higher visible light driven Mehtlyne blue (MB) degradation. The mechanism of formation of additional Ti-O-Ti bond by condensation process is also illustrated elaborately. Theoretical calculations of the potential of VB and CB show the effect of active sites on degradation and can be associated with redox reactions for water splitting ability. Possible model of sentisized photocatalysis for hydrogen production with hydrogen and oxygen evolution site is also proposed in this article. Thus, TiO2 nanoparticles with acetic acid variation are promising sources for photocatalytic/catalytic applications.evolution site is also proposed in this article. Thus, pH-dependent TiO2 nanoparticles are promising sources for photocatalytic/catalytic applications.


Author(s):  
Vinila Mundakkal Lakshmanan ◽  
Aparna Kallingal ◽  
Sreepriya Sreekumar

Abstract A mathematical model is developed and designed for the cumene reactor in cumene production process in Hindustan Organic Chemicals Limited (HOCL), Kochi with improved operating conditions. High purity cumene is produced by the alkylation of benzene with propylene in this catalytic condensation process where solid phosphoric acid (SPA) is used as the catalyst. The mathematical model has been derived from mass and energy balance equations considering the reactor as fixed packed bed reactor and two different numerical methods are presented here to solve the modelling equations. The explicit finite difference method (FDM) involves the approximation of derivatives into finite differences, and in the other one, orthogonal collocation (OC), Ordinary Diffeential Equations (ODEs) are formed at the collocation points and are solved using Runge–Kutta fourth order numerical scheme. Here the analysis shows that the predictions from the model are in good alignment with the plant data. The combined feed has the optimum value of 1:2:8 for propylene, propane and benzene and the profiles of temperature and concentration can be obtained along the reactor. The model has been implemented in COMSOL Multiphysics as a packed bed reactor using the same parameters collected from the plant of study. It has been found that the reaction occurs at a satisfactory level even with a low temperature than the reactor temperature at the plant by changing the catalytic particle size. The reaction performance is also analysed for the physical properties like porosity and catalyst size.


2021 ◽  
Vol 927 (1) ◽  
pp. 012033
Author(s):  
Taufiq Bin Nur ◽  
Justin Kongnardi

Abstract There have been many efforts to reduce the use of fossil fuels and reduce carbon dioxide emissions by using renewable energy (solar energy, wind energy, water energy, and energy obtained from biomass) as a substitute for fossil fuels. As one of the largest CPO producers globally, Indonesia produces 4 kilograms of dry biomass for every 1 kilogram of oil palm produced. The biomass conversion process into synthetic gas (syngas) can be carried out using the pyrolysis process. The syngas can be used as an alternative fuel for an internal combustion engine. This study aims to simulate the pyrolysis process to obtain syngas’ characteristics made from oil palm empty bunches (EFBs) and palm fiber. Around 4 kg EFB and 2 kg of fiber are used as pyrolysis raw materials. The Aspen Plus simulation was used to design and analyzed the pyrolysis flow processes. The results showed that the hot syngas produced at a working temperature of 450°C to 650°C was 1.475 kg/hr to 1.587 kg/hr. The cold syngas produced is 0.969 kg/hr to 1.407 kg/hr. The heating value of hot syngas is 10,348 kJ/kg to 14,213.55 kJ/kg, and cold syngas is 15,751.51 kJ/kg to 16,022.7 kJ/kg. Change in syngas composition between hot and cold syngas is due to the condensation process. The minimum condenser area required to produce cold syngas for 6 kg and 500 kg biomass pyrolysis raw material are 25.5 m2 and 632.2 m2, respectively.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1401-1410
Author(s):  
Elia Turco ◽  
Matus Stredansky ◽  
Roberto Costantini ◽  
Javier A. Martinez ◽  
Martina Dell’Angela ◽  
...  

The on-surface synthesis of boroxine-containing molecules can be a convenient method of introducing specific functionalities. Here, we show the validity of a previously described synthesis protocol on the Au (111) surface by applying it to a different molecular precursor. We study in detail the assembly of the precursor, highlighting possible intermediate stages of the condensation process. We combine scanning tunneling microscopy and X-ray spectroscopies to fully characterize both the morphology and the electronic properties of the system. DFT calculations are presented to assign the main electronic transitions originating the B K-edge absorption spectrum. The study paves the way to a facile strategy for functionalizing a surface with molecules of tailored sizes and compositions.


2021 ◽  
Vol 904 ◽  
pp. 375-381
Author(s):  
Guang Qu ◽  
Dong Sheng Wang ◽  
Qun You Wang ◽  
Meng Zhang Hua

An electrosparking experiment of ASP30 powder metallurgical steel was carried out through tool electrode forced cooling based on micro heat pipe bundle by using the semiconductor encapsulation mould. Results demonstrate that the micro groove formed among sintered copper fibers based on wick of micro heat pipe and the unique composite structure of the surface chopped morphology can not only increase capillary pressure of the wick, but also strengthen evaporation/condensation process at two ends of the micro heat pipe, and improve cooling effect of micro heat pipe to tool electrode significantly. Compared with traditional electrosparking, electrosparking of tool electrode forced cooling based on micro heat pipe bundle increases the inter-electrode cooling, chip removal and deionization of electrosparking and further lowers tool electrode loss by strengthening heat dissipation of tool electrode. Hence, it can improve stability of electrosparking, increase pulse utilization and increase the processing speed and processing surface quality significantly.


2021 ◽  
Vol 9 ◽  
Author(s):  
Na Liu ◽  
Qian Zhao ◽  
Zhixiang Lan

Two-phase flow regimes were experimentally investigated during the entire condensation process of refrigerant R152a in a circular glass minichannel. The inner and outer diameters of the test minichannel were 0.75 and 1.50 mm. The channel was 500 mm long to allow observation of all the two-phase flow regimes during the condensation process. The experiments used saturation temperatures from 30 to 50°C, a mass flux of 150 kg/(m2·s) and vapor qualities from 0 to 1. The annular, intermittent and bubbly flow regimes were observed for the experimental conditions in the study. The absence of the stratified flow regime shows that the gravitational effect is no longer dominant in the minichannel for these conditions. Vapor-liquid interfacial waves, liquid bridge formation and vapor core breakage were observed in the minichannel. Quantitative measurements of flow regime transition locations were carried out in the present study. The experiments also showed the effects of the saturation temperature and the cooling water mass flow rate on flow regime transitions. The results show that the annular flow range decreases and the intermittent and bubbly flow ranges change little with increasing saturation temperature. The cooling water mass flow rate ranging from 38.3 kg/h to 113.8 kg/h had little effect on the flow regime transitions.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6825
Author(s):  
Marcin Kruzel ◽  
Tadeusz Bohdal ◽  
Krzysztof Dutkowski

The paper describes the results of experimental studies of media as an intermediary in heat exchange taking place in low volume conditions. Their properties predestine them both as a future-proof for transporting and storing heat materials. The paper concerns the current topic related to the miniaturization of cooling heat exchangers. There are many studies in the literature on the phase transition of refrigerants in the flow in pipe minichannels. However, there is a lack of studies devoted to the condensation process in a small volume on the surface of pipe minichannels. The authors proposed a design of a small heat exchanger with a shell-and-tube structure, where the refrigerant condenses on the outer surface of the pipe minichannels cooled from the inside with water. It is a response to the global trend of building highly efficient, miniaturized structures for cooling and air conditioning heat exchangers. Two future-proof, ecological replacements of the CFC refrigerants still present in the installations were used for the experimental research. These are low-pressure fluids HFE 7000 and HFE 7100. The tests were carried out in a wide range of changes in thermal-flow parameters: G = 20–700 kg·m−²s−1, q = 3000–60,000 W·m−², ts = 40–80 °C.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012082
Author(s):  
Peng Wang ◽  
Jingwen Sun ◽  
Pipei Zhang ◽  
Jiangwei Wang ◽  
Zhonghua Zhao

Abstract The condensation on solid materials surface inside switchgear is an important reason threatening its safety and reliability. The formation of condensation is closely related to the temperature and humidity distribution inside the switchgear. A 3-D simplified finite element calculation model for the switchgear is established, including the bus bar, the wall bushing, the circuit breaker, the cables and other key components. Based on the electromagnetic-temperature-humidity multi-physical field coupling method, the temperature distribution inside the switchgear are calculated when the operating current flows through the bus-bar. Furthermore, the humidity diffusion process is also calculated when the relative humidity of external environment was 0.8, and the relative humidity inside the switchgear is obtained. The calculation results show that the surface humidity of the contact box of the circuit breaker is the highest whereas the temperature is the lowest, which is the location where the condensation is easy to occur.


Sign in / Sign up

Export Citation Format

Share Document