dipolar orientation
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Amaury Fimbel ◽  
Thierry Abensur ◽  
Minh-Quyen Le ◽  
Jean-Fabien Capsal ◽  
Pierre-Jean Cottinet

Electroadhesion is a phenomenon ruled by many characteristic intrinsic parameters. To achieve a good adhesion, efficient and durable, a particular attention must be provided to the adhesion forces between the involved parts. In addition to the size and geometry of electrodes, parameters of materials such as dielectric constant, breakdown electric field, and Young’s modulus are key factors in the evaluation of electroadhesion efficiency for electrostrictive polymers and electroactive devices. By analyzing these material parameters, a method is proposed to justify the choice of polymer matrices that are fit to specific electroadhesion applications. Another purpose of this work aims to demonstrate a possibility of accurately measuring the electroadhesion force. This physical parameter has been usually estimated through equations instead, because of the complexity in setup implementation to achieve highly precise measure. Comparisons based on the parameters criterion reveal that besides the intrinsic properties of material, some other parameters relating to its physical phenomena (e.g., saturation of dipolar orientation under high electric field leads to decrease dielectric constant), or physical behavior of the system (i.e., surface roughness reduces the active electrode area) must be thoroughly considered. Experimental results pointed out that plasticized terpolymer leads boosted electroadhesion performance compared to the other counterparts, up to 100 times higher than conventional polymers. The developed materials show high potential in applications of active displacement control for electrostrictive actuation.


2021 ◽  
Author(s):  
Kamal Ray ◽  
Aditya Limaye ◽  
Ka Chon Ng ◽  
Ankur Saha ◽  
Sucheol Shin ◽  
...  

We use second harmonic generation (SHG) spectroscopy, molecular dynamics simulation, and theoretical modeling to study the response of the neat liquid water-air interface to changes in the potential of an external electrode positioned above the liquid. We observe a parabolic dependence of second harmonic intensity on applied potential. This dependence is reminiscent of bulk-phase electric field induced second harmonic (EFISH) but more complicated because it combines the second-order response of the topmost water layer and the potential dependent response of the interfacial electrical double-layer. Based on the literature values for these contributions, we derive a physical interpretation of our measurements that reveals new insight into the response of the neat water interface to external electric fields. Specifically, we find that the net dipolar orientation of water molecules within the double-layer is primarily responsive to the internal fields generated by the excess surface concentrations of OH- and H3O+ that arise to screen the external potential. Notably, this interpretation implies that the orientational response of water dipoles at the interface can actually oppose the direction of the external field, a subtle effect that is not captured by traditional models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Tyunina ◽  
O. Pacherova ◽  
T. Kocourek ◽  
A. Dejneka

AbstractIn scientifically intriguing and technologically important multifunctional ABO3 perovskite oxides, oxygen vacancies are most common defects. They cause lattice expansion and can alter the key functional properties. Here, it is demonstrated that contrary to weak isotropic expansion in bulk samples, oxygen vacancies produce strong anisotropic strain in epitaxial thin films. This anisotropic chemical strain is explained by preferential orientation of elastic dipoles of the vacancies. Elastic interaction of the dipoles with substrate-imposed misfit strain is suggested to define the dipolar orientation. Such elastic behavior of oxygen vacancies is anticipated to be general for perovskite films and have critical impacts on the film synthesis and response functions.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 78 ◽  
Author(s):  
Denis G. Knyazev ◽  
Roland Kuttner ◽  
Ana-Nicoleta Bondar ◽  
Mirjam Zimmerman ◽  
Christine Siligan ◽  
...  

The bacterial channel SecYEG efficiently translocates both hydrophobic and hydrophilic proteins across the plasma membrane. Translocating polypeptide chains may dislodge the plug, a half helix that blocks the permeation of small molecules, from its position in the middle of the aqueous translocation channel. Instead of the plug, six isoleucines in the middle of the membrane supposedly seal the channel, by forming a gasket around the translocating polypeptide. However, this hypothesis does not explain how the tightness of the gasket may depend on membrane potential. Here, we demonstrate voltage-dependent closings of the purified and reconstituted channel in the presence of ligands, suggesting that voltage sensitivity may be conferred by motor protein SecA, ribosomes, signal peptides, and/or translocating peptides. Yet, the presence of a voltage sensor intrinsic to SecYEG was indicated by voltage driven closure of pores that were forced-open either by crosslinking the plug to SecE or by plug deletion. We tested the involvement of SecY’s half-helix 2b (TM2b) in voltage sensing, since clearly identifiable gating charges are missing. The mutation L80D accelerated voltage driven closings by reversing TM2b’s dipolar orientation. In contrast, the L80K mutation decelerated voltage induced closings by increasing TM2b’s dipole moment. The observations suggest that TM2b is part of a larger voltage sensor. By partly aligning the combined dipole of this sensor with the orientation of the membrane-spanning electric field, voltage may drive channel closure.


2018 ◽  
Vol 97 (2) ◽  
Author(s):  
J. Bjerlin ◽  
J. Bengtsson ◽  
F. Deuretzbacher ◽  
L. H. Kristinsdóttir ◽  
S. M. Reimann

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Parijat Sarkar ◽  
Hirak Chakraborty ◽  
Amitabha Chattopadhyay

Author(s):  
Amir Djalalian-Assl

For distances less 10 nm, a total energy transfer occurs from a quantum emitter to a nearby metallic surface, producing evanescent surface waves that are plasmonic in nature. When investigating a metallic nanohole supported on an optically dense substrate (such as diamond with NV-), the scattering occurred preferentially from the diamond substrate towards the air for dipole distances less 10 nm from the aperture. In addition, an enhancement to the dipole's radiative decay rate was observed when resonance of the aperture matched the emitters wavelength. The relationship between an emitter and a nearby resonant aperture is shown to be that of the resonance energy transfer where the emitter acts as a donor and the hole as an acceptor. In conjunction with the preferential scattering behavior, this has led to the proposed device that operates in transmission mode, eliminating the need for epi-illumination techniques and optically denser than air superstrates in the collection cycle, hence making the design simpler and more suitable for miniaturization. A design criterion for the surface grating is also proposed to improve the performance, where the period of the grating differs significantly from the wavelength of the surface plasmon polaritons. Response of the proposed device is further studied with respect to changes in NV's position and its dipolar orientation to identify the crystallographic planes of diamond over which the performance of the device is maximized.


2017 ◽  
Vol 19 (15) ◽  
pp. 10062-10068 ◽  
Author(s):  
Jolanta Świergiel ◽  
Jan Jadżyn

Discrepancy between permittivity of water and alcohols and consistency in dipolar orientation effects revealed the anomalously high polarizability of water.


2016 ◽  
Vol 18 (31) ◽  
pp. 21767-21779 ◽  
Author(s):  
Vrushali R. Hande ◽  
Suman Chakrabarty

We show that the distance from the interface at which bulk-like properties are recovered strongly depends on the choice of order parameter being probed: translational < tetrahedral ≪ dipolar orientation.


Sign in / Sign up

Export Citation Format

Share Document