water retention curve
Recently Published Documents


TOTAL DOCUMENTS

528
(FIVE YEARS 176)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Vol 25 (1) ◽  
pp. 21-35
Author(s):  
Esam Mahmoud Mohammed ◽  
Salahaldeen Abid-Alziz AL-Qassab ◽  
Faris Akram Salih AL-Wazan

The objective of this research was to assess the use of unsaturated water flow in terms of soil water evaporation, which was determined by evaluating some soil hydraulic parameters in different soil textures. The results show that the predicted values of these parameters, which were obtained through inverse modeling with the HYDRUS-1D software and depend on the change of the volumetric water content, exhibited a significant agreement with the measured values from laboratory or field simulation data for soil water evaporation at 5. 10. 20. and 45 days of measurement. At the same time, inverse simulation was conducted on soil hydraulic parameters obtained from a 5-day laboratory soil evaporation period to predict field infiltration values and water retention curve, which showed a significant agreement with measured values for all soil textures.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Vilim Filipović ◽  
Jasmina Defterdarović ◽  
Vedran Krevh ◽  
Lana Filipović ◽  
Gabrijel Ondrašek ◽  
...  

Erosion has been reported as one of the top degradation processes that negatively affect agricultural soils. The study objective was to identify hydropedological factors controlling soil water dynamics in erosion-affected hillslope vineyard soils. The hydropedological study was conducted at identically-managed Jastrebarsko (location I), and Jazbina (II) and (III) sites with Stagnosol soils. Soil Hydraulic Properties (SHP) were estimated on intact soil cores using Evaporation and WP4C methods; soil hydraulic functions were fitted using HYPROP-FIT software. For Apg and Bg/Btg horizons, uni- and bimodal soil hydraulic models could be well fitted to data; although, the bimodal model performed better in particular cases where data indicated non-uniform pore size distribution. With these SHP estimations, a one-year (2020) water flow scenario was simulated using HYDRUS-1D to compare water balance results obtained with uni- and bimodal hydraulic functions. Simulation results revealed relatively similar flux distribution at each hillslope position between the water balance components infiltration, surface runoff, and drainage. However, at the bottom profile at Jastrebarsko, bimodality of the hydraulic functions led to increased drainage. Soil water storage was reduced, and the vertical movement increased due to modified soil water retention curve shapes. Adequate parameterization of SHP is required to capture the hydropedological response of heterogenous erosion-affected soil systems.


2021 ◽  
Vol 69 (4) ◽  
pp. 378-386
Author(s):  
Hongjie Guan ◽  
Xinyu Liu

Abstract The presence of biocrusts changes water infiltration in the Mu Us Desert. Knowledge of the hydraulic properties of biocrusts and parameterization of soil hydraulic properties are important to improve simulation of infiltration and soil water dynamics in vegetation-soil-water models. In this study, four treatments, including bare land with sporadic cyanobacterial biocrusts (BL), lichen-dominated biocrusts (LB), early-successional moss biocrusts (EMB), and late-successional moss biocrusts (LMB), were established to evaluate the effects of biocrust development on soil water infiltration in the Mu Us Desert, northwest of China. Moreover, a combined Wooding inverse approach was used for the estimation of soil hydraulic parameters. The results showed that infiltration rate followed the pattern BL > LB > EMB > LMB. Moreover, the LB, EMB, and LMB treatments had significantly lower infiltration rates than the BL treatment. The saturated soil moisture (θs ) and shape parameter (α VG) for the EMB and LMB treatments were higher than that for the BL and LB treatments, although the difference among four treatments was insignificant. Water retention increased with biocrust development at high-pressure heads, whereas the opposite was observed at low-pressure heads. The development of biocrusts influences van Genuchten parameters, subsequently affects the water retention curve, and thereby alters available water in the biocrust layer. The findings regarding the parameterization of soil hydraulic properties have important implications for the simulation of eco-hydrological processes in dryland ecosystems.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032088
Author(s):  
Milan Cisty ◽  
Barbora Povazanova

Abstract The paper presents two methods that simplify the estimation of the water retention curves. The case study is evaluated for the soils of Záhorská lowland in the paper. These methods are based on the supposed dependence of the soil water content on the percentage content of the 1st, 2nd, 3rd and 4th Kopecký grain categories, and the dry bulk density. The representative set of the drying branch of water retention curves was measured using soil samples from the Záhorská lowland region in a laboratory. Particle size distribution and dry bulk density were also determined. In this paper support vector machines and multiple linear regression is compared to estimate the pedotransfer functions that can be used for the prediction of the drying branch of the water retention curve. Both methods were verified on other data set of measured water retention curves than the one which was used for building the models with a close agreement to measured results.


Sign in / Sign up

Export Citation Format

Share Document