aqueous core
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 4)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2010
Author(s):  
Carmen M. Arroyo-García ◽  
Daniela Quinteros ◽  
Santiago D. Palma ◽  
Cesáreo J. Jiménez de los Santos ◽  
José R. Moyano ◽  
...  

The purpose of this study was to design, for the first time, a co-loaded liposomal formulation (CLL) for treatment of glaucoma including timolol maleate (TM) in the lipid bilayer and acetazolamide (Acz)-(2-hydroxy)propyl β-cyclodextrin (HPβCD) complexes (AczHP) solubilized in the aqueous core of liposomes. Formulations with TM (TM-L) and AczHP (AczHP-L), separately, were also prepared and characterized. A preliminary study comprising the Acz/HPβCD complexes and their interaction with cholesterol (a component of the lipid bilayer) was realized. Then, a screening study on formulation factors affecting the quality of the product was carried out following the design of the experiment methodology. In addition, in vitro release and permeation studies and in vivo lowering intraocular pressure (IOP) studies were performed. The results of the inclusion complexation behavior, characterization, and binding ability of Acz with HPβCD showed that HPβCD could enhance the water solubility of Acz despite the weak binding ability of the complex. Ch disturbed the stability and solubility parameters of Acz due to the fact of its competence by CD; thus, Chems (steroid derivative) was selected for further liposome formulation studies. The optimization of the lipid bilayer composition (DDAB, 0.0173 mmol and no double loading) and the extrusion as methods to reduce vesicle size were crucial for improving the physico-chemical properties and encapsulation efficiency of both drugs. In vitro release and permeation studies demonstrated that the CLL formulation showed improvement in in vitro drug release and permeation compared to the liposomal formulations with a single drug (TM-L and AczHP-L) and the standard solutions (TM-S and AczHP-S). CLL showed high efficacy in reducing and prolonging IOP, suggesting that the synergistic effect of TM and Acz on aqueous humor retention and the presence of this cyclodextrin and liposomes as permeation enhancers are responsible for the success of this strategy of co-loading for glaucoma therapy.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1788
Author(s):  
Paolo Trucillo ◽  
Roberta Campardelli ◽  
Iolanda De Marco

Drug delivery systems (DDS) are artificial devices employed to enhance drug bioavailability during administration to a human body. Among DDS, liposomes are spherical vesicles made of an aqueous core surrounded by phospholipids. Conventional production methods are characterized by several drawbacks; therefore, Supercritical assisted Liposome formation (SuperLip) has been developed to overcome these problems. Considering that the use of high pressures involves high energy cost, in this paper, sustainability indicators were calculated to quantitatively evaluate the emissions related to the attainment of liposomes containing daunorubicin (a model antibiotic drug) using the SuperLip process. The indicators were depicted using a spider diagram to raise the actual weaknesses of this technique; some variations were proposed in the process layout to solve the critical issues. According to the literature, many studies related to the pharmaceutical industry are expressed in terms of solid, liquid waste, and toxic emissions; however, liposomes have never explicitly been considered for an analysis of environmental sustainability.


2021 ◽  
Author(s):  
Alexander Revzin ◽  
Kihak Gwon ◽  
HyeJin Hong ◽  
Alan M Gonzalez-Suarez ◽  
Michael Q Slama ◽  
...  

Human pluripotent stem cells (hPSC) hold considerable promise as a source of adult cells for treatment of diseases ranging from diabetes to liver failure. Some of the challenges that limit the clinical/translational impact of hPSCs are high cost and difficulty in scaling-up of existing differentiation protocols. In this paper, we sought to address these challenges through the development of bioactive microcapsules. A co-axial flow focusing microfluidic device was used to encapsulate hPSCs in microcapsules comprised of an aqueous core and a hydrogel shell. Importantly, the shell contained heparin moieties for growth factor (GF) binding and release. The aqueous core enabled rapid aggregation of hPSCs into 3D spheroids while the bioactive hydrogel shell was used to load inductive cues driving pluripotency maintenance and endodermal differentiation. Specifically, we demonstrated that one-time 1h long loading of pluripotency signals, fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, into bioactive microcapsules was sufficient to induce and maintain pluripotency of hPSCs over the course of 5 days at levels similar to or better than a standard protocol with soluble GFs. Furthermore, stem cell-carrying microcapsules that previously contained pluripotency signals could be reloaded with an endodermal cue, Nodal, resulting in higher levels of endodermal markers compared to stem cells differentiated in a standard protocol. Overall, bioactive heparin-containing core-shell microcapsules decreased GF usage five-fold while improving stem cell phenotype and are well suited for 3D cultivation of hPSCs.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Latifa W. Allahou ◽  
Seyed Yazdan Madani ◽  
Alexander Seifalian

Chemotherapy is the routine treatment for cancer despite the poor efficacy and associated off-target toxicity. Furthermore, therapeutic doses of chemotherapeutic agents are limited due to their lack of tissue specificity. Various developments in nanotechnology have been applied to medicine with the aim of enhancing the drug delivery of chemotherapeutic agents. One of the successful developments includes nanoparticles which are particles that range between 1 and 100 nm that may be utilized as drug delivery systems for the treatment and diagnosis of cancer as they overcome the issues associated with chemotherapy; they are highly efficacious and cause fewer side effects on healthy tissues. Other nanotechnological developments include organic nanocarriers such as liposomes which are a type of nanoparticle, although they can deviate from the standard size range of nanoparticles as they may be several hundred nanometres in size. Liposomes are small artificial spherical vesicles ranging between 30 nm and several micrometres and contain one or more concentric lipid bilayers encapsulating an aqueous core that can entrap both hydrophilic and hydrophobic drugs. Liposomes are biocompatible and low in toxicity and can be utilized to encapsulate and facilitate the intracellular delivery of chemotherapeutic agents as they are biodegradable and have reduced systemic toxicity compared with free drugs. Liposomes may be modified with PEG chains to prolong blood circulation and enable passive targeting. Grafting of targeting ligands on liposomes enables active targeting of anticancer drugs to tumour sites. In this review, we shall explore the properties of liposomes as drug delivery systems for the treatment and diagnosis of cancer. Moreover, we shall discuss the various synthesis and functionalization techniques associated with liposomes including their drug delivery, current clinical applications, and toxicology.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lin Rong ◽  
Xiaoqing Mu ◽  
Jinchao Zhao ◽  
Leping Huang ◽  
Mingqiao Ye ◽  
...  

Millimeter-scale calcium alginate aqueous core capsules (mm-CaSA-Caps) are suitable for embedding of temperature and chemical sensitive substances because of its excellent biocompatibility and biodegradability. In this study, mm-CaSA-Caps were coated with multiwalled carbon nanotubes (MWNTs) via in situ self-polymerization of dopamine (DA) under mild conditions. During the modification process, mm-CaSA-Caps transferred quickly from colorless and transparent capsules to dark and opaque “pearls” in 15 min. The obtained MWNTs-polydopamine- (PDA-) modified mm-CaSA-Caps (mm-MWNTs-PDA@CaSA-Caps) retained the spherical appearance of mm-CaSA-Caps with uniform coating of MWNTs-PDA. Obviously, the MWNTs were easily coated on the mm-PDA@CaSA-Caps due to the strong adhesive property of PDA. As the MWNTs content increased, the stacking density of MWNTs on surface of the mm-MWNTs-PDA@CaSA-Caps raised. The water loss ratio of mm-MWNTs-PDA@CaSA-Caps was enhanced ascribed to increasing the path length of water by raising stacking density of MWNTs. This study provided a new path for enhancement of the barrier property of hydrogel capsules.


Author(s):  
Raghad M. Abuhamdan ◽  
Bayan H. Al-Anati ◽  
Yazan Al Thaher ◽  
Ziad A. Shraideh ◽  
Mahmoud Y. Alkawareek ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 872
Author(s):  
Paola Mura ◽  
Francesca Maestrelli ◽  
Marzia Cirri ◽  
Giulia Nerli ◽  
Lorenzo Di Cesare Di Cesare Mannelli ◽  
...  

This work was aimed at enhancing butamben (BTB) anesthetic efficacy by the “drug-in cyclodextrin (CD)-in deformable liposomes” strategy. In the study, phase-solubility studies with natural (α-, β-, γ-) and derivative (hydroxypropyl-α-and β-, sulfobutylether-β, methyl-β) CDs evidenced the highest BTB affinity for βCD and its derivatives and indicated methyl-βCD (RAMEB) as the best carrier. Drug-RAMEB complexes were prepared by different techniques and were characterized for solid-state and dissolution properties. The best BTB–RAMEB product was chosen for entrapment in the aqueous core of deformable liposomes containing stearylamine, either alone or with sodium cholate, as edge activators. Double-loaded (DL) liposomes, bearing the lipophilic drug (0.5% w/v) in the bilayer and its hydrophilic RAMEB complex (0.5% w/v) in the aqueous core, were compared to single-loaded (SL) liposomes bearing 1% w/v plain drug in the bilayer. All vesicles showed homogeneous dimensions (i.e., below 300 nm), high deformability, and excellent entrapment efficiency. DL-liposomes were more effective than SL ones in limiting drug leakage (<5% vs. >10% after a 3 months storage at 4 °C). In vivo experiments in rabbits proved that all liposomal formulations significantly (p < 0.05) increased the intensity and duration of drug anesthetic action compared to its hydroalcoholic solution; however, DL liposomes were significantly (p < 0.05) more effective than SL ones in prolonging BTB anesthetic effect, owing to the presence of the drug-RAMEB complex in the vesicle core, acting as a reservoir. DL liposomes containing both edge activators were found to have the best performance.


2021 ◽  
pp. 2100046
Author(s):  
Donato Cosco ◽  
Federica Bruno ◽  
Germano Castelli ◽  
Roberto Puleio ◽  
Sonia Bonacci ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Enling Chang ◽  
Jiachuan Bu ◽  
Lili Ding ◽  
Jenny W. H. Lou ◽  
Michael S. Valic ◽  
...  

Abstract Background Porphyrin-lipids are versatile building blocks that enable cancer theranostics and have been applied to create several multimodal nanoparticle platforms, including liposome-like porphysome (aqueous-core), porphyrin nanodroplet (liquefied gas-core), and ultrasmall porphyrin lipoproteins. Here, we used porphyrin-lipid to stabilize the water/oil interface to create porphyrin-lipid nanoemulsions with paclitaxel loaded in the oil core (PLNE-PTX), facilitating combination photodynamic therapy (PDT) and chemotherapy in one platform. Results PTX (3.1 wt%) and porphyrin (18.3 wt%) were loaded efficiently into PLNE-PTX, forming spherical core–shell nanoemulsions with a diameter of 120 nm. PLNE-PTX demonstrated stability in systemic delivery, resulting in high tumor accumulation (~ 5.4 ID %/g) in KB-tumor bearing mice. PLNE-PTX combination therapy inhibited tumor growth (78%) in an additive manner, compared with monotherapy PDT (44%) or chemotherapy (46%) 16 days post-treatment. Furthermore, a fourfold reduced PTX dose (1.8 mg PTX/kg) in PLNE-PTX combination therapy platform demonstrated superior therapeutic efficacy to Taxol at a dose of 7.2 mg PTX/kg, which can reduce side effects. Moreover, the intrinsic fluorescence of PLNE-PTX enabled real-time tracking of nanoparticles to the tumor, which can help inform treatment planning. Conclusion PLNE-PTX combining PDT and chemotherapy in a single platform enables superior anti-tumor effects and holds potential to reduce side effects associated with monotherapy chemotherapy. The inherent imaging modality of PLNE-PTX enables real-time tracking and permits spatial and temporal regulation to improve cancer treatment. Graphic Abstract


Author(s):  
Mounika S Bharath ◽  
Bhushan R Rane ◽  
Ashish S Jain

A new drug delivery technology called transferosomes were came into existence which is an artificial vesicle designed to show the characteristics of a cell vesicle suitable for controlled and potentially directed drug delivery. Transferosome is a highly flexible and stress- responsive compound, complex compound and highly deformed vesicle with an aqueous core surrounded by the complex lipid bilayer thus enabling it to deliver both hydrophilic and hydrophobic drug. Urticaria is a general condition distinguished as brief erythematous and oedematous plaques or papules with defined erythematous borders and central clearing, identified as hives/wheals. Levocetirizine which is used for the treatment is a H1 anti histamine that is actively used in treatment of urticaria. The aim of the present research work was to investigate the potential of transferosome formulations for transdermal delivery of  levocetirizine. The transferosomes were formulated by lipid film hydration technique using Rotary vacuum Evaporator. In the present work levocetirizine vesicle was efficaciously formulated using an appropriate ratio of tween 80 and soya lecithin and was incorporated into gel since gel formulations are easy to administer and patient compliance. Levocetirizine transferosomes was evaluated for vesicle characteristicslike zeta potential, poly-dispersibility index, TEM, and stability study. Theaverage sizes of transferosome were found to be 566.6nm and poly dispersity index (PI) was found to be 0.532, zeta potential of the transferosome was found to be -2.3 mV which indicates that transferosome formulation is stable. Levocetirizine gel was prepared by using various concentrations of Carbopol 934 and is evaluated for their gel characteristics like pH, viscosity, Spreadability, extrudability, homogeneity, drug content, diffusion etc. Gel containing 2% Carbopol show best and promising results. Levocetirizine transferosomal gel were efficaciously formulated by utilizing levocetirizine transferosome which was prepared by thin film hydration method by using soya lecithin and tween 80 in the ratio 85:15. Other Oral formulation used in treatment for urticaria have disadvantage like poor bioavailability, 1st pass metabolism, patient non-compliance etc. Transferosome nano gel loaded with levocetirizine transferosome was found to be more effective than other oral formulations used in treatment for urticaria since transferosome are capable of passing through lipid layer and delivering drug into systemic circulation with maximum bioavailability.


Sign in / Sign up

Export Citation Format

Share Document