scholarly journals New solution generating algorithm for isotropic static Einstein-Gauss-Bonnet metrics

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Sunil D. Maharaj ◽  
Sudan Hansraj ◽  
Parbati Sahoo

AbstractThe static isotropic gravitational field equation, governing the geometry and dynamics of stellar structure, is considered in Einstein–Gauss–Bonnet (EGB) gravity. This is a nonlinear Abelian differential equation which generalizes the simpler general relativistic pressure isotropy condition. A gravitational potential decomposition is postulated in order to generate new exact solutions from known solutions. The conditions for a successful integration are examined. Remarkably we generate a new exact solution to the Abelian equation from the well known Schwarzschild interior seed metric. The metric potentials are given in terms of elementary functions. A physical analysis of the model is performed in five and six spacetime dimensions. It is shown that the six-dimensional case is physically more reasonable and is consistent with the conditions restricting the physics of realistic stars.

Author(s):  
S. Saha Ray ◽  
S. Singh

AbstractIn this article, an exact solution of the Wick-type stochastic Zakharov–Kuznetsov equation has been obtained by using the Kudryashov method. We have used the Hermite transform for transforming the Wick-type stochastic Zakharov–Kuznetsov equation into a deterministic partial differential equation. Also we have applied the inverse Hermite transform for obtaining a set of stochastic solution in the white noise space.


2007 ◽  
Vol 7 (1) ◽  
pp. 25-47 ◽  
Author(s):  
I.P. Gavrilyuk ◽  
M. Hermann ◽  
M.V. Kutniv ◽  
V.L. Makarov

Abstract The scalar boundary value problem (BVP) for a nonlinear second order differential equation on the semiaxis is considered. Under some natural assumptions it is shown that on an arbitrary finite grid there exists a unique three-point exact difference scheme (EDS), i.e., a difference scheme whose solution coincides with the projection of the exact solution of the given differential equation onto the underlying grid. A constructive method is proposed to derive from the EDS a so-called truncated difference scheme (n-TDS) of rank n, where n is a freely selectable natural number. The n-TDS is the basis for a new adaptive algorithm which has all the advantages known from the modern IVP-solvers. Numerical examples are given which illustrate the theorems presented in the paper and demonstrate the reliability of the new algorithm.


2003 ◽  
Vol 10 (2) ◽  
pp. 381-399
Author(s):  
A. Yu. Veretennikov

Abstract We establish sufficient conditions under which the rate function for the Euler approximation scheme for a solution of a one-dimensional stochastic differential equation on the torus is close to that for an exact solution of this equation.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 687-695 ◽  
Author(s):  
B. J. AHMEDOV ◽  
A. V. KHUGAEV ◽  
N. I. RAKHMATOV

We present analytic solutions of Maxwell equations for infinitely long cylindrical conductors with nonvanishing electric charge and currents in the external background spacetime of a line gravitomagnetic monopole. It has been shown that vertical magnetic field arising around cylindrical conducting shell carrying azimuthal current will be modified by the gravitational field of NUT source. We obtain that the purely general relativistic magnetic field which has no Newtonian analog will be produced around charged gravitomagnetic monopole.


2017 ◽  
Vol 13 (2) ◽  
pp. 262-283 ◽  
Author(s):  
Vladimir Kobelev

Purpose The purpose of this paper is to propose the new dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach. The anticipated unified propagation function describes the infinitesimal crack-length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification functions with different number of fitting parameters are proposed. On one hand, the closed-form analytical solutions facilitate the universal fitting of the constants of the fatigue law over all stages of fatigue. On the other hand, the closed-form solution eases the application of the fatigue law, because the solution of nonlinear differential equation turns out to be dispensable. The main advantage of the proposed functions is the possibility of having closed-form analytical solutions for the unified crack growth law. Moreover, the mean stress dependence is the immediate consequence of the proposed law. The corresponding formulas for crack length over the number of cycles are derived. Design/methodology/approach In this paper, the method of representation of crack propagation functions through appropriate elementary functions is employed. The choice of the elementary functions is motivated by the phenomenological data and covers a broad region of possible parameters. With the introduced crack propagation functions, differential equations describing the crack propagation are solved rigorously. Findings The resulting closed-form solutions allow the evaluation of crack propagation histories on one hand, and the effects of stress ratio on crack propagation on the other hand. The explicit formulas for crack length over the number of cycles are derived. Research limitations/implications In this paper, linear fracture mechanics approach is assumed. Practical implications Shortening of evaluation time for fatigue crack growth. Simplification of the computer codes due to the elimination of solution of differential equation. Standardization of experiments for crack growth. Originality/value This paper introduces the closed-form analytical expression for crack length over number of cycles. The new function that expresses the damage growth per cycle is also introduced. This function allows closed-form analytical solution for crack length. The solution expresses the number of cycles to failure as the function of the initial size of the crack and eliminates the solution of the nonlinear ordinary differential equation of the first order. The different common expressions, which account for the influence of the stress ratio, are immediately applicable.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


Author(s):  
Abeer Aldabagh

In this paper, a new iterative method was applied to the Zakharov-Kuznetsov system to obtain the approximate solution and the results were close to the exact solution, A new technique has been proposed to reach the lowest possible error, and the closest accurate solution to the numerical method is to link the numerical method with the pso algorithm which is denoted by the symbol (NIM-PSO). The results of the proposed Technique showed that they are highly efficient and very close to the exact solution, and they are also of excellent effectiveness for treating partial differential equation systems.


Sign in / Sign up

Export Citation Format

Share Document