Parameters Optimization of Laser Shot Peening Based on Multi-Island Genetic Algorithm

2010 ◽  
Vol 43 ◽  
pp. 387-390 ◽  
Author(s):  
W. Wang ◽  
Jian Zhong Zhou ◽  
Shu Huang ◽  
Yu Jie Fan ◽  
C.D. Wang ◽  
...  

Laser shot peening (LSP) has recently received more and more attention as a viable laser processing technology, since it can obtain the desirable residual compressive stress to improve fatigue life of the material by precisely controlling laser parameters. The purpose of this paper is mainly to explore the optimal residual compressive stress in the surface layer during LSP by statistical optimization algorithm. Based on the finite element analysis software ANSYS, Multi-island Genetic Algorithm (MIGA) is adopted to find the best solution of design requirements, the control parameters are laser pulse energy and spot diameter, while the aim parameters are residual compressive stress and deformation values, respectively. The results indicate that the optimal residual compressive stress obtained by integrated optimization technique can significantly improve the mechanical properties of the target after LSP. It provides a guiding importance for parameters optimization in future experimental research and practical application.

2019 ◽  
Vol 10 (1) ◽  
pp. 105
Author(s):  
Zhaorui Yang ◽  
Youngseog Lee ◽  
Shangwen He ◽  
Wenzhen Jia ◽  
Jun Zhao

The effectiveness of shot peening is mainly determined by the peening coverage. The peening coverage is required to be 100% for current technical standards of shot peening. With the increase of material strength, higher peening coverage is required in shot peening process. However, the influence of high peening coverage on Almen intensity and residual compressive stress is unclear, the difficulty mainly lies in the lack of quantitative description of peening coverage in finite element analysis. To analyze the influence of high peening coverage on Almen intensity and residual compressive stress, firstly an approximate quantitative description of peening coverage based on dent size, the distance of shots and shot numbers is proposed in this study. Based on this quantitative description of peening coverage, the arc height and residual stress of the Almen test are simulated with the finite element method. The simulation results of arc height and saturation curve agree well with that of the Almen test, by which the effectiveness of the quantitative description and FE simulation are proved. The further study indicates that in shot peening processes, the excessive peening coverage doesn’t improve Almen intensity and residual compressive stress.


2011 ◽  
Vol 368-373 ◽  
pp. 489-494 ◽  
Author(s):  
Xu Lin Tang ◽  
Jian Cai ◽  
Qing Jun Chen ◽  
An He ◽  
Chun Yang

In order to study the mechanical behavior of the joint between concrete filled steel tubular column and beam with discontinuous column tube at the joint zone under axial pressure, the finite element analysis software ANSYS is adopted for parametric analysis and the analysis results are compared with experimental ones. The principal compressive stress is mainly transmitted by the inside area of the joint which is subjected to local compression if it is low, but extends to more outside areas of the joint if it is high. The radial compressive stress, which is the confined stress of the ring beam to the core concrete of the joint, keeps the same as that the width of the ring beam equal to the diameter of the core area of the joint. The vertical strain on the edge of the joint, which would lead to horizontal annular cracks in the side face of the ring beam, changes from tension in the whole height to tension only in the top part and compression in the lower part of the joint, which is consistent with the experimental phenomenon.


2014 ◽  
Vol 644-650 ◽  
pp. 455-458
Author(s):  
Yao Ye ◽  
Yong Hai Wu

Frame has important effects on the performance of the whole of heavy semi-trailer. A heavy semi-trailer frame is analyzed and researched on in the finite-element way in this article. The frame of 3D geometric model is established by using Pro/E. And it was imported into the Hypermesh to establish frame finite element model. Frame are calculated by using ANSYS solver in bending condition, emergency braking conditions and rapid turn conditions of stress and deformation conditions. The computational tools and methods we used provide the new type of frame and development with a reference method to refer to in this paper.


2012 ◽  
Vol 443-444 ◽  
pp. 713-718
Author(s):  
Sui Ran Yu ◽  
Quan Fei Zhang

This paper introduces a optimize design method of ship unloader. The traditional structure design method is totally by experience and manual calculation, while this method is using the Finite Element Analysis (FEA) method to optimize the structure of ship unloader. Therefore this method may keep the stress and deformation of the structure under permission with less use of materials. First we use the FEA analysis software ANSYS to analyze the static strength and stiffness of grab ship unloader, and get its stress and deformation under different work conditions. Then we evaluate the results and modify the structures to improve the performances of the structure under the complex working conditions. Case study shows this method is effective and efficient in practical use.


2014 ◽  
Vol 1055 ◽  
pp. 218-223
Author(s):  
Jin Yu ◽  
Xiu Feng Zhu ◽  
Yan Liang Gao

This paper indicates a kind of research on the optimization of clamping scheme for the joint thin-walled parts in milling process .The three-dimensional model of four-flute end mill and the part are made by UG. The effect of different clamping scheme on the deformation of joint structure is simulated by the finite element analysis software ABAQUS. With the purpose of getting the minimum of the average deformation, MATLAB genetic algorithm optimizes the clamping scheme and acquires the best clamping scheme. The simulation and optimization provide an effective method for controlling the deformation due to different clamping scheme of aeronautic joint-shaped workpiece.


2012 ◽  
Vol 157-158 ◽  
pp. 604-607
Author(s):  
Xuan Ling ◽  
Xu Dong Wang

Waterjet propulsion system have been increasingly used in the world due to its advantage of good maneuverability, operability, less vibration etc. The full understanding of waterjet reaction thrust is the preliminary step for the design of waterjet system. A recent research in this area is optimizing the nozzle structure of waterjet propulsion system to increase the waterjet reaction thrust as much as possible. In order to obtain the optimal parameters of nozzle, a new integrated method combining genetic algorithm with CFD simulation analysis is put forward in this paper. The integrated method will not only shorten the system design cycle, it will also develop optimization technique to realize the potential of computer based design automation. Finally, the optimal results are presented and discuss.


2011 ◽  
Vol 422 ◽  
pp. 842-845
Author(s):  
Xue Ping Wang ◽  
Ying Zhang ◽  
Pan Li ◽  
Zhen Wei Zhang

This paper primarily simulates the heat exchange part’s stress and strain situation under the load of temperature and gravity and their coupling impact aiming at obtaining the stress and deformation distribution. The authors took advantage of the method of the finite element analysis to study the stress and strain situation. Through the analysis, each part of the transfer’s stress and strain can be calculated. The conclusion of this paper provides the basis for the further enhancement of the machine life and optimization of the structure design.


Author(s):  
Jia Gao ◽  
Seungbae Park ◽  
James Pitarresi ◽  
Dorel Homentcovschi

There has been an increasing interest in the applications of thin membrane in space application, flexible electronic display, manufacturing of glass displays and growth of film on materials at elevated temperatures. Because of the negligible bending stiffness of thin membranes, membranes are lack of resistance to compressive stress. For the applications at high temperatures, the thermal expansion coefficient mismatch between membrane and substrate materials may generate compressive stress that causes the membrane buckling. The study of thermal buckling of isotropic elastic plate in the context of the large - deflection theory was the subject of a series of papers[1-5]. However, it has been noted that none of these papers has considered the second buckling of the membrane resulting in membrane wrinkling. The presence of wrinkles may significantly change deflection and stress profile of membranes. So, it is important to develop an effective analysis method to investigate the wrinkle formation and evolution in membrane subjected the elevated temperature. This paper presents the experiment work to investigate wrinkle formation and evolution in membranes heated from room temperature up to 170 °C. The specimens consist of polymer and metal membranes with steel and silicon substrate respectively. A wide range of membrane shapes and aspect ratios are considered in this work. An experiment set up is developed to study the deflection profiles of membranes at discrete temperatures. The information gained from this experiment work is used to validate numerical modeling results. The Finite Element Analysis results using nonlinear post-buckling analysis are also included in this paper. The nonlinear post-buckling analysis provides a good understanding of the mechanism of wrinkle generation and evolution as temperature increased. It is shown that the first buckling of membrane significantly reduces bending stiffness thus to create localized buckling modes accounting for the wrinkle generation. The wrinkle pattern is stable until the temperature reaches the next critical value. After this critical temperature, the wrinkle pattern is changed until temperature reaches the next critical value. The new wrinkle pattern is keeping evolved until the final temperature is reached. The finite element analysis results are in good agreement with experimental observations.


2013 ◽  
Vol 471 ◽  
pp. 324-328
Author(s):  
Nawar A. Kadhim ◽  
N. Nik Abdullah ◽  
S. Abdullah ◽  
A.K. Arrifin

The finite element modeling and analysis have been performed to investigate the effects of nitriding, cold rolled and shot peening on fatigue life of an automotive lower suspension arm component which fabricated of SAE1045 steel. The finite element analysis (FEA) results indicate a great effect for all surface finish parameters on fatigue life. It shows that nitriding increased the fatigue life of the component better than shot peening, while cold rolled effect was between them. In a nut shell, nitriding can be considered as the best surface treatment to improve the fatigue life of the automotive lower suspension arm which fabricated of SAE1045 steel.


Author(s):  
Colin D. Chapman ◽  
Kazuhiro Saitou ◽  
Mark J. Jakiela

Abstract The Genetic Algorithm, a search and optimization technique based on the theory of natural selection, is applied to problems of structural topology optimization. Given a structure’s boundary conditions and maximum allowable design domain, a discretized design representation is created. Populations of genetic algorithm “chromosomes” are then mapped into the design representation, creating potentially optimal structure topologies. Utilizing genetics-based operators such as crossover and mutation, generations of increasingly-desirable structure topologies are created. In this paper, the use of the genetic algorithm (GA) in structural topology optimization is presented. An overview of the genetic algorithm will describe the genetics-based representations and operators used in a typical genetic algorithm search. After defining topology optimization and its relation to the broader area of structural optimization, a review of previous research in GA-based and non-GA-based structural optimization is provided. The design representations, and methods for mapping genetic algorithm “chromosomes” into structure topology representations, are then detailed. Several examples of genetic algorithm-based structural topology optimization are provided: we address the optimization of beam cross-section topologies and cantilevered plate topologies, and we also investigate efficient techniques for using finite element analysis in a genetic algorithm-based search. Finally, a description of potential future work in genetic algorithm-based structural topology optimization is offered.


Sign in / Sign up

Export Citation Format

Share Document