flow condition
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 150)

H-INDEX

25
(FIVE YEARS 5)

2021 ◽  
pp. 1-34
Author(s):  
S Satish Kumar ◽  
Dilipkumar Bhanudasji Alone ◽  
Shobhavathy Thimmaiah ◽  
J Rami Reddy Mudipalli ◽  
Lakshya Kumar ◽  
...  

Abstract For successful implementation of casing treatment designs in axial compressors, apart from the stall margin improvement benefits, aeroelasticity also plays a major role. This manuscript addresses the not often discussed aeroelastic aspects of a new discrete type of passive Self-Recirculating Casing Treatment (RCT) designed for a transonic axial compressor stage. Experiments are carefully designed for synchronized measurement of the unsteady fluidic disturbances and vibrations during rotating stall for compressor with baseline solid casing and Self-RCT. The modal characteristics of the axial compressor rotor-disk assembly are studied experimentally and numerically. Experimentally it is observed that the rotating stall cells excite the blades in their fundamental mode in a compressor with baseline solid casing at the stall flow condition. In contrast, there is no excitation of the blades in the compressor with self-recirculating casing treatment at the same solid casing stall flow condition. Also, the self-recirculating casing treatment compared to the solid casing can significantly reduce the overall vibration levels of the blades that are excited at the stall flow condition. The casing treatment is able to alter the flow field near the tip region of the rotor blade, and hence influencing the forcing function of the rotating cantilever blades to have the aeroelastic benefit.


2021 ◽  
Vol 9 (12) ◽  
pp. 1429
Author(s):  
Fan Yang ◽  
Pengcheng Chang ◽  
Yao Yuan ◽  
Na Li ◽  
Rongsheng Xie ◽  
...  

Vertical axial flow pump device has the characteristics of large flow and low head, which is widely used in pumping station projects with head of 3–9 m. In order to study the influence of the timing effect of the impeller relative flow channel and guide vane on the flow field and pulsation in the axial flow pump device, the whole flow channel of the vertical axial flow pump device was taken as the research object. The reliability of the numerical simulation was verified by physical model test. The flow field characteristics and pressure pulsation characteristics of the inlet and outlet regions of the impeller, the guide vane and the campaniform inlet conduit at different timing positions of the impeller under different flow rates were analyzed. The results show that the pressure coefficient distribution of the impeller inlet of the vertical axial flow pump device presents four high-pressure areas and four low-pressure areas with the rotation of the impeller. The pressure pulsation at the inlet and outlet of the impeller is mainly affected by the rotation of the impeller, and the main frequency is 4 times the rotation frequency amplitude of pressure pulsation decreases with the increase of flow rate. When the flow rate increased from 0.8 Qbep to 1.2 Qbep, the average velocity circulation at the guide vane outlet decreased by 12%; there is an obvious negative value region of the internal regularized helicity of the guide vane. When the flow rate increases from 0.8 Qbep to 1.2 Qbep, the amplitude of the pressure pulsation coefficient at the outlet of the guide vane decreases gradually, with a decrease of 94%. When the flow rate is 1.2 Qbep, the main frequency and the secondary frequency of the pressure pulsation are both low-frequency, with obvious low-frequency pulsation characteristics. Under the small flow condition of 0.8 Qbep, the outlet flow fluctuation of seven guide vane was 18.9% on average, and the flow variation of each guide vane was large. Under the optimal flow condition of 1.0 Qbep and large flow condition of 1.2 Qbep, the outlet flow fluctuation of 7 guide vane is 4.7% and 0.56% on average, and the flow change of each guide vane is stable. The outlet flow of the guide vane is mainly concentrated in two guide vane slots of the guide vane, and the flow ratios are 30.56%, 30.14% and 29.16% under three flow conditions, respectively. The research results provide a scientific basis for the optimization design and stable operation of vertical axial flow pump device.


Fuel ◽  
2021 ◽  
pp. 122188
Author(s):  
Weiqi Fu ◽  
Jing Yu ◽  
Yang Xiao ◽  
Chenglai Wang ◽  
Bingxiang Huang ◽  
...  

2021 ◽  
pp. 039139882110569
Author(s):  
Xu Mei ◽  
Bin Lu ◽  
Min Zhong ◽  
Yuxin Zhu ◽  
Liudi Zhang ◽  
...  

Despite technological advances in mechanical circulatory support devices to treat end-stage heart failure, blood damage induced by non-physiological shear stress in operation often triggered clinical hemocompatibility complications. The loss of high molecular weight von Willebrand Factor (HMW-VWF) has been considered as an essential cause of gastrointestinal bleeding. In addition to the mechanics factors, interface factors may also affect blood damage, especially the surface characteristics. In this study, the effect of surface roughness on VWF damage under flow condition was investigated. A roller pump circulation experimental platform with a roughness embedded sample chamber was constructed to provide blood shearing flow condition. VWF molecular weight analysis, VWF antigen (VWF-Ag) concentration assay, and VWF ristocetin cofactor activity (VWF-Rico) assay were performed on the sheared blood samples. These variables are the main functional indicators of VWF. It was found that the surface roughness induced VWF damage is mainly caused by the loss of HMW-VWF rather than reducing the total amount of VWF. The threshold value of surface roughness for a rapid increase in the degradation of HMW-VWF under low flow rate was obtained between Ra 0.4 and 0.6 μm, which was smaller than the threshold for hemolysis. Our findings indicated that VWF is more sensitive to the interface factor of surface roughness than red blood cells, thus has a higher requirement for blood pump design. It could provide reference for the material design and processing in developing mechanical circulatory support devices.


2021 ◽  
pp. 127659
Author(s):  
Kang Zhao ◽  
Shah Tufail ◽  
Yuji Arai ◽  
Prabhakar Sharma ◽  
Qianru Zhang ◽  
...  

2021 ◽  
Author(s):  
Maryam Shahab

<div>Large scale water pumps with bell mouth intakes have been broadly used by municipal wastewater services to move sewage to wastewater treatment plants. Swirling of the flow when entering the suction bell of the pump intake can cause free-surface and/or sub-surface vortices, resulting in poor pump operation. In order to properly design, the wet well of sewage pump station both physical and numerical models are used to analyze the flow condition entering the pump intake and the associated flow pattern and potential vortex formation. In cooperation with WSP Canada Ltd., a physical modelling study of the First Narrows Sewage Pumping Station was conducted by the Ryerson research team at Ryerson University’s Centre of Urban Innovation Laboratory. During the physical model testing, uneven flow distributions including vortices were observed at the intake chamber under three pump-working conditions. To achieve an even flow distribution with minimal vortices, alternative slot designs at the entrance of the chamber were analyzed.</div><div>Additionally, a tapered design of the suction bell intake was tested for potential vortex formation. The results showed that a reduced area of the entrance slot could distribute the inflow evenly in the chamber. Moreover, no vortex formation around the tapered suction bell was found under (a) a low flow condition of 10 l/s at a water level -5.10 m below datum and (b) a cleaning cycle scenario of 16 l/s at a water level -4.9 m below the datum. However, there was observed water rotations at the backwall side. For tight and intense water rotations, it might cause vortex formation. This study has provided design changes that can smooth the flow and reduce vortices at the bell mouth intakes of the pump intake chamber.</div>


Sign in / Sign up

Export Citation Format

Share Document