single photon detectors
Recently Published Documents


TOTAL DOCUMENTS

666
(FIVE YEARS 158)

H-INDEX

50
(FIVE YEARS 7)

2022 ◽  
Vol 16 (2) ◽  
pp. 81-93
Author(s):  
A. V. Kolyako ◽  
A. S. Pleshkov ◽  
D. B. Tretyakov ◽  
V. M. Entin ◽  
I. I. Ryabtsev ◽  
...  

Experimental results demonstrating long-term stability of the operation of our atmospheric quantum cryptography setup using the BB84 protocol and polarization coding are presented. It was shown that the “sifted” quantum key distribution rate and the quantum bit error rate in the key remained constant for 1 hour and were equal to 10 kbit/s and 6.5 %, respectively, at a distance between the transmitter and the receiver equal to 20 cm. Theoretical dependences of the secret quantum key generation rate on a quantum channel transmission coefficient for single-photon detectors, which were used in this experiment, and for new detectors with a reduced level of dark pulses are given.


2022 ◽  
Vol 120 (1) ◽  
pp. 010401
Author(s):  
Christoph Becher ◽  
Sven Höfling ◽  
Jin Liu ◽  
Peter Michler ◽  
Wolfram Pernice ◽  
...  

2022 ◽  
Vol 275 ◽  
pp. 115499
Author(s):  
J.A. Hofer ◽  
M. Ginzburg ◽  
S. Bengio ◽  
N. Haberkorn

2021 ◽  
Vol 16 (6) ◽  
Author(s):  
Brandon A. Wilson ◽  
Alexander Miloshevsky ◽  
David A. Hooper ◽  
Nicholas A. Peters

2021 ◽  
Vol 22 (24) ◽  
pp. 13400
Author(s):  
Luba A. Astakhova ◽  
Artem D. Novoselov ◽  
Maria E. Ermolaeva ◽  
Michael L. Firsov ◽  
Alexander Yu. Rotov

Green rods (GRs) represent a unique type of photoreceptor to be found in the retinas of anuran amphibians. These cells harbor a cone-specific blue-sensitive visual pigment but exhibit morphology of the outer segment typical for classic red rods (RRs), which makes them a perspective model object for studying cone–rod transmutation. In the present study, we performed detailed electrophysiological examination of the light sensitivity, response kinetics and parameters of discrete and continuous dark noise in GRs of the two anuran species: cane toad and marsh frog. Our results confirm that anuran GRs are highly specialized nocturnal vision receptors. Moreover, their rate of phototransduction quenching appeared to be about two-times slower than in RRs, which makes them even more efficient single photon detectors. The operating intensity ranges for two rod types widely overlap supposedly allowing amphibians to discriminate colors in the scotopic region. Unexpectedly for typical cone pigments but in line with some previous reports, the spontaneous isomerization rate of the GR visual pigment was found to be the same as for rhodopsin of RRs. Thus, our results expand the knowledge on anuran GRs and show that these are even more specialized single photon catchers than RRs, which allows us to assign them a status of “super-rods”.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012096
Author(s):  
Aleksei Reutov ◽  
Denis Sych

Abstract Measurement of photon statistics is an important tool for the verification of quantum properties of light. Due to the various imperfections of real single photon detectors, the observed statistics of photon counts deviates from the underlying statistics of photons. Here we analyze statistical properties of coherent states, and investigate a connection between Poissonian distribution of photons and sub-Poissonian distribution of photon counts due to the detector dead-time corrections. We derive a functional dependence between the mean number of photons and the mean number of photon counts, as well as connection between higher-order statistical moments, for the pulsed or continuous wave coherent light sources, and confirm the results by numerical simulations.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012030
Author(s):  
K I Khomiakova ◽  
A P Kokhanenko ◽  
A V Losev

Abstract Nowadays the best single photon detectors from a practical view are those based on InGaAs/InP avalanche photodiodes, operating at a wavelength of 1.55 μm. The dependence of quantum efficiency and noise levels on the temperature and bias voltage of avalanche photodiodes were carried out.


2021 ◽  
Author(s):  
Hou-Rong Zhou ◽  
Kun-Jie Cheng ◽  
Jie Ren ◽  
Li-Xing You ◽  
Li-Liang Ying ◽  
...  

Abstract Superconducting nanowire single-photon detectors (SNSPDs) are typical switching devices capable of detecting single photons with almost 100% detection efficiency. However, they cannot determine the exact number of incident photons during a detection event. Multi-pixel SNSPDs employing multiple read-out channels can provide photon number resolvability (PNR), but they require increased cooling power and costly multi-channel electronic systems. In this work, a single-flux quantum (SFQ) circuit is employed, and PNR based on multi-pixel SNSPDs is successfully demonstrated. A multi-input magnetically coupled DC/SFQ converter (MMD2Q) circuit with a mutual inductance M is used to combine and record signals from a multi-pixel SNSPD device. The designed circuit is capable of discriminating the amplitude of the combined signals with an accuracy of Φ 0/M. By employing the MMD2Q circuit, the discrimination of up to 40 photons can be simulated. A 4-parallel-input MMD2Q circuit is fabricated, and a PNR of 3 is successfully demonstrated for an SNSPD array with one channel reserved for the functional verification. The results confirm that an MMD2Q circuit is an effective tool for implementing PNR with multi-pixel SNSPDs.


Author(s):  
Fiona Thorburn ◽  
Xin Yi ◽  
Zoe Greener ◽  
Jaroslaw Kirkoda ◽  
Ross Millar ◽  
...  

Abstract Germanium-on-Silicon (Ge-on-Si) based single-photon avalanche diodes (SPADs) have recently emerged as a promising detector candidate for ultra-sensitive and picosecond resolution timing measurement of short-wave infrared (SWIR) photons. Many applications benefit from operating in the SWIR spectral range, such as long distance Light Detection and Ranging (LiDAR), however, there are few single-photon detectors exhibiting the high-performance levels obtained by all-silicon SPADs commonly used for single-photon detection at wavelengths < 1 μm. This paper first details the advantages of operating at SWIR wavelengths, the current technologies, and associated issues, and describes the potential of Ge-on-Si SPADs as a single-photon detector technology for this wavelength region. The working principles, fabrication and characterisation processes of such devices are subsequently detailed. We review the research in these single-photon detectors and detail the state-of-the-art performance. Finally, the challenges and future opportunities offered by Ge-on-Si SPAD detectors are discussed.


Small ◽  
2021 ◽  
pp. 2103963
Author(s):  
Hailu Wang ◽  
Jiaxiang Guo ◽  
Jinshui Miao ◽  
Wenjin Luo ◽  
Yue Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document